Advertisement

Biodiversity and Conservation

, Volume 26, Issue 11, pp 2591–2605 | Cite as

How effective are buffer zones in managing invasive beavers in Patagonia? A simulation study

  • Alejandro G. PietrekEmail author
  • Gina K. Himes Boor
  • William F. Morris
Original Paper
Part of the following topical collections:
  1. Invasive species

Abstract

In an age of invasions, it is critical to design and test management strategies to more efficiently control foreign species. Spatially explicit individual based models (SEIBMs) are a powerful tool to explore different management scenarios to control invaders, but we rarely have enough data to parameterize these models, particularly for relatively long-lived species. Here we take advantage of our previous work estimating demographic rates of invasive beavers in Patagonia, and develop an SEIBM to model the spread of beavers in Patagonia. We used our SEIBM both to estimate dispersal distances by fitting their observed rate of spread and to test how placing a buffer zone (a longitudinal strip of land perpendicular to the direction of spread within which a fraction of beavers are culled) beyond the invasion front would work as a control strategy. Specifically, we explored six different scenarios with two different culling rates and two buffer zone widths. We found that beavers in Patagonia must disperse long distances on average to account for the observed rate of spread, and thus our model predicts that a 100 km buffer zone will be needed to slow (but likely not halt) the spread of beavers. Interestingly, culling a higher proportion of beavers within a 100 km buffer zone (90 vs. 60%) did not improve buffer zone performance. Our study shows that wide buffer zones can slow (but likely not halt) continental spread of beavers in Patagonia and potentially pave the way for beaver eradication.

Keywords

Castor canadensis Cordon sanitaire Long distance dispersal Patagonia SEIBM 

Notes

Acknowledgements

The authors want to thank Julio Escobar for his valuable comments on the conceptual design and development of the individual based simulations and Mariano Gonzalez Roglich who helped to build the GIS landscapes used in our simulations. This work was funded by Cleveland Metroparks Zoo, CREOI (Conservation and Research Opportunities International), Duke Graduate School and the Rufford Foundation.

References

  1. Adams VM et al (2015) Distribution, demography and dispersal model of spatial spread of invasive plant populations with limited data. Methods Ecol Evol 6:782–794. doi: 10.1111/2041-210X.12392 CrossRefGoogle Scholar
  2. Allen AW, Energy W, Team LU (1983) Habitat suitability index models: beaver. Western Energy and Land Use Team, Division of Biological Service, Research and Development, Fish and Wildlife Service, US Department of the InteriorGoogle Scholar
  3. Altwegg R, Collingham YC, Erni B, Huntley B (2013) Density-dependent dispersal and the speed of range expansions. Divers Distrib 19:60–68. doi: 10.1111/j.1472-4642.2012.00943.x CrossRefGoogle Scholar
  4. Anderson CB, Rosemond AD (2007) Ecosystem engineering by invasive exotic beavers reduces in-stream diversity and enhances ecosystem function in Cape Horn, Chile. Oecologia 154:141–153. doi: 10.1007/s00442-007-0757-4 CrossRefPubMedGoogle Scholar
  5. Anderson CB, Rosemond AD (2010) Beaver invasion alters terrestrial subsidies to subantarctic stream food webs. Hydrobiologia 652:349–361. doi: 10.1007/s10750-010-0367-8 CrossRefGoogle Scholar
  6. Anderson C, Griffith C, Rosemond A, Rozzi R, Dollenz O (2006) The effects of invasive North American beavers on riparian plant communities in Cape Horn, Chile: do exotic beavers engineer differently in sub-Antarctic ecosystems? Biol Conserv 128:467–474CrossRefGoogle Scholar
  7. Anderson CB, Vanessa Lencinas M, Wallem PK, Valenzuela AEJ, Simanonok MP, Martínez Pastur G (2014) Engineering by an invasive species alters landscape-level ecosystem function, but does not affect biodiversity in freshwater systems. Divers Distrib 20:214–222. doi: 10.1111/ddi.12147 CrossRefGoogle Scholar
  8. Beer JR (1955) Movements of tagged beaver. J Wildl Manage 19:492–493CrossRefGoogle Scholar
  9. Byrne AW, Quinn JL, O’Keeffe JJ, Green S, Paddy Sleeman D, Wayne Martin S, Davenport J (2014) Large-scale movements in European badgers: has the tail of the movement kernel been underestimated? J Anim Ecol 83:991–1001. doi: 10.1111/1365-2656.12197 CrossRefPubMedGoogle Scholar
  10. Choi C (2008) Tierra del Fuego: the beavers must die. Nat News 453:968CrossRefGoogle Scholar
  11. Coronato A, Escobar J, Mallea C, Roig C, Lizarralde M (2003) Caracteristicas geomorfologicas de rios de montaña colonizados por Castor canadensis en Tierra del Fuego. Argentina Ecol Austral 13:15–26Google Scholar
  12. Freuling CM, Hampson K, Selhorst T, Schröder R, Meslin FX, Mettenleiter TC, Müller T (2013) The elimination of fox rabies from Europe: determinants of success and lessons for the future. Philos Trans R Soc B. doi: 10.1098/rstb.2012.0142 Google Scholar
  13. Graells G, Corcoran D, Aravena J (2015) Invasion of North American beaver (Castor canadensis) in the province of Magallanes, Southern Chile: comparison between dating sites through interviews with the local community and dendrochronology. Rev Chil Hist Nat 88:3CrossRefGoogle Scholar
  14. Grimm V, Railsback SF (2013) Individual-based modeling and ecology. Princeton University Press, PrincetonGoogle Scholar
  15. Grimm V et al (2005) Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science 310:987–991. doi: 10.1126/science.1116681 CrossRefPubMedGoogle Scholar
  16. Harrington LA, Hughes J, Macdonald DW (2008) Management of American mink in the northern highlands: a proposed cordon sanitaire approach. Wildlife Conservation Research Unit, University of OxfordGoogle Scholar
  17. Haydon D et al (2006) Low-coverage vaccination strategies for the conservation of endangered species. Nature 443:692–695CrossRefPubMedGoogle Scholar
  18. Henn JJ, Anderson CB, Kreps G, Lencinas MV, Soler R, Pastur GM (2014) Determining abiotic and biotic factors that limit transplanted Nothofagus pumilio Seedling success in abandoned beaver meadows in Tierra del Fuego. Ecol Restor 32:369–378. doi: 10.3368/er.32.4.369 CrossRefGoogle Scholar
  19. Kot M, Lewis MA, van den Driessche P (1996) Dispersal data and the spread of invading organisms. Ecology 77:2027–2042CrossRefGoogle Scholar
  20. Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710CrossRefGoogle Scholar
  21. Malmierca L, Menvielle M, Ramadori D, Saavedra B, Saunders A, Soto N, Schiavini A (2011) Eradication of beaver (Castor canadensis), an ecosystem engineer and threat to southern Patagonia. In: Island invasives: eradication and management, International Conference on Island Invasives, 2011. pp 87-90Google Scholar
  22. Manchester SJ, Bullock JM (2000) The impacts of non-native species on UK biodiversity and the effectiveness of control. J Appl Ecol 37:845–864. doi: 10.1046/j.1365-2664.2000.00538.x CrossRefGoogle Scholar
  23. Martínez Pastur G, Lencinas M, Escobar J, Quiroga P, Malmierca L, Lizarralde M (2006) Understorey succession in Nothofagus forests in Tierra del Fuego (Argentina) affected by Castor canadensis. Appl Veg Sci 9:143–154CrossRefGoogle Scholar
  24. Menvielle M, Funes M, Malmierca L, Ramadori D, Saavedra B, Schiavini A, Soto Volkart N (2010) American beaver eradication in the southern tip of South America: main challenges of an ambitious project. Aliens Invasive Species Bull 29:9–16Google Scholar
  25. Moorman MC, Eggleston DB, Anderson CB, Mansilla A, Szejner P (2009) Implications of beaver Castor canadensis and trout introductions on native fish in the Cape Horn Biosphere Reserve, Chile. Trans Am Fish Soc 138:306–313. doi: 10.1577/t08-081.1 CrossRefGoogle Scholar
  26. Muller-Schwarze D (2011) The beaver: its life and impact. Cornell University Press, IthacaCrossRefGoogle Scholar
  27. Murray J, Stanley E, Brown D (1986) On the spatial spread of rabies among foxes. Proc R Soc London B 229:111–150CrossRefGoogle Scholar
  28. Parker H, Nummi P, Hartman G, Rosell F (2012) Invasive North American beaver Castor canadensis in Eurasia: a review of potential consequences and a strategy for eradication. Wildl Biol 18:354–365CrossRefGoogle Scholar
  29. Pech R, Byrom A, Anderson D, Thomson C, Coleman M (2010) The effect of poisoned and notional vaccinated buffers on possum (Trichosurus vulpecula) movements: minimising the risk of bovine tuberculosis spread from forest to farmland. Wildl Res 37:283–292CrossRefGoogle Scholar
  30. Pietrek AG (2015) Demography and spread of invasive beavers in the heterogeneous landscapes of Patagonia. Dissertation, Duke UniversityGoogle Scholar
  31. Pietrek AG, Fasola L (2014) Origin and history of the beaver introduction in South America. Mastozoología Neotropical 21:355–359Google Scholar
  32. Pietrek AG, González-Roglich M (2015) Post-establishment changes in habitat selection by an invasive species: beavers in the Patagonian steppe. Biol Invasions 17:3225–3235CrossRefGoogle Scholar
  33. Pietrek AG, Escobar JM, Fasola L, Roesler I, Schiavini A (2016) Why invasive Patagonian beavers thrive in unlikely habitats: a demographic perspective. J Mammal. doi: 10.1093/jmammal/gyw169 Google Scholar
  34. Russell CA, Smith DL, Childs JE, Real LA (2005) Predictive spatial dynamics and strategic planning for raccoon rabies emergence in Ohio. PLoS Biol 3:382–388. doi: 10.1371/journal.pbio.0030088 CrossRefGoogle Scholar
  35. Sanguinetti J et al (2014) Manejo de especies exóticas invasoras en Patagonia, Argentina: Priorización, logros y desafíos de integración entre ciencia y gestión identificados desde la Administración de Parques Nacionales. Ecología austral 24:183–192Google Scholar
  36. Saveljev A, Stubbe M, Stubbe A, Unzhakov V, Kononov S (2002) Natural movements of tagged beavers in Tyva. Russ J Ecol 33:434–439CrossRefGoogle Scholar
  37. Schiavini A, Carranza ML, Deferrari G, Escobar J, Malmierca L, Pietrek AG (2016) Erradicación de especies invasoras: Ciencia, actitud y entendimiento. El castor en Tierra del Fuego Mastozoología Neotropical 23:279–288Google Scholar
  38. Simberloff D (2009) We can eliminate invasions or live with them. Successful management projects. Biol Invasions 11:149–157. doi: 10.1007/s10530-008-9317-z CrossRefGoogle Scholar
  39. Skewes O, Gonzalez F, Olave R, Avila A, Vargas V, Paulsen P, Konig HE (2006) Abundance and distribution of American beaver, Castor canadensis (Kuhl 1820), in Tierra del Fuego and Navarino islands, Chile. Eur J Wildl Res 52:292–296. doi: 10.1007/s10344-006-0038-2 CrossRefGoogle Scholar
  40. Sleeman DP, Davenport J, More SJ, Clegg TA, Griffin JM, O’Boyle I (2008) The effectiveness of barriers to badger Meles meles immigration in the Irish Four Area project. Eur J Wildl Res 55:267–278. doi: 10.1007/s10344-008-0241-4 CrossRefGoogle Scholar
  41. Soto Simeone A, Soza-Amigo S (2014) Economic valuation of native forest affected by the North American beaver (Castor canadensis) in Tierra del Fuego. BOSQUE 35:229–234CrossRefGoogle Scholar
  42. Travis JMJ, Murrell DJ, Dytham C (1999) The evolution of density–dependent dispersal. Proc R Soc London B 266:1837–1842. doi: 10.1098/rspb.1999.0854 CrossRefGoogle Scholar
  43. Travis JMJ, Harris CM, Park KJ, Bullock JM (2011) Improving prediction and management of range expansions by combining analytical and individual-based modelling approaches. Methods Ecol Evol 2:477–488. doi: 10.1111/j.2041-210X.2011.00104.x CrossRefGoogle Scholar
  44. White A, Bell SS, Lurz PW, Boots M (2014) Conservation management within strongholds in the face of disease-mediated invasions: red and grey squirrels as a case study. J Appl Ecol 51:1631–1642CrossRefGoogle Scholar
  45. Wilcove DS, Rothstein D, Dubow J, Phillips A, Losos E (1998) Quantifying threats to imperiled species in the United States. Bioscience 48:607–615CrossRefGoogle Scholar
  46. Wilensky U (1999) NetLogo. Center for connected learning and computer-based modeling, Northwestern University, Evanston, IL. http://ccl.northwestern.edu/netlogo/

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of BiologyDuke UniversityDurhamUSA
  2. 2.Department of BiologyUniversity of FloridaGainesvilleUSA

Personalised recommendations