Biodiversity and Conservation

, Volume 26, Issue 7, pp 1641–1657 | Cite as

Erosion of insect diversity in response to 7000 years of relative sea-level rise on a small Mediterranean island

  • Yoann PoherEmail author
  • Philippe Ponel
  • Frédéric Guiter
  • Valérie Andrieu-Ponel
  • Frédéric Médail
Original Paper


We have investigated the potential effects of global sea-level rise on Mediterranean coastal wetlands by studying the Coleoptera and pollen fossil remains in a 7000-year sedimentary record, which we obtained from a coastal marshy area on a small Mediterranean island (Cavallo, southern Corsica). Using beetle structural diversity and plant composition as recorded prior to marine and human influences as a ‘past analogue’, we reconstructed the impact of the Holocene relative sea-level rise on the coastal ecosystem. Our results show that beetle species richness and diversity were highest when freshwater was predominant, which was the case until about 6200 years ago. We also found that a major increase in salinity had occurred over the last 5300 years, experiencing a peak rate of increase at about 3700 years ago. These changes are clearly reflected in the fossil records of the following key taxa: halophilous beetles (Ochthebius sp., Pterostichus cursor), halophilous plants (Chenopodiaceae, Tamarix) and non-pollen palynomorphs (microforaminiferal linings). In particular, we note that the majority (60%) of wetland beetle fauna became locally extinct in response to the salinity changes, and these changes were exacerbated by the recent aggravation of human pressures on the island. The major part of this diversity loss occurred 3700 years ago, when the relative Mediterranean sea-level rose above −1.5 ± 0.3 meters. These findings demonstrate the value of fossil beetle assemblage analysis as a diagnostic for the response of coastal wetland biodiversity to past salinity increases, and serve as a means of forecasting the effects of sea-level rise in the future. The conservation of inland freshwater bodies could ultimately prove essential to preserving freshwater insect diversity in threatened coastal environments.


Fossil Coleoptera Biodiversity Island Sea-level rise Wetland 



This study was incorporated within the framework of the CoP2A (Corsican Palaeoclimate, Palaeoenvironments & Anthropization) project, which is supported by the Laboratoire d’Excellence Objectif-Terre Bassin méditerranéen (Labex OT-Med) of Aix Marseille University (ANR-11-LABEX-0061), and by the DyPaCo (Dynamique des paléoenvironnements de la Corse, convention no.15/005) project which is supported by the Office de l’environnement de la Corse (OEC)/Conservatoire botanique national de Corse. The fieldwork was funded by the French government (projet Investissements d’Avenir) within the Initiative d’excellence A*MIDEX/MEDNET of Aix Marseille University (ANR-11-IDEX-0001-02), and performed during a field school of the Master SET-SBEM of Aix Marseille University. The authors wish to thank the Conservatoire Botanique National de Corse and its director Laetitia Hugot for their constant support of this research. We also thank the Association pour la protection de l’environnement de l’île de Cavallo (APEIC), notably Mrs. Matthieu Bidali and Michel Orlanducci for their permission to work on the private island of Cavallo. Finally, thanks are due to the two anonymous reviewers for their constructive remarks.

Supplementary material

10531_2017_1322_MOESM1_ESM.xlsx (78 kb)
Supplementary material 1 (XLSX 77 kb)
10531_2017_1322_MOESM2_ESM.xlsx (25 kb)
Supplementary material 2 (XLSX 24 kb)
10531_2017_1322_MOESM3_ESM.pdf (461 kb)
Supplementary material 3 (PDF 460 kb)


  1. Agostini P (1978) Recherches archéologiques dans l’île Cavallu (Bonifacio, Corse) 1972–1977. Archeol Corsa 3:15–54Google Scholar
  2. Ali MM, Mageed AA, Heikal M (2007) Importance of aquatic macrophyte for invertebrate diversity in large subtropical reservoir. Limnollogica 37:155–169. doi: 10.1016/j.limno.2006.12.001 CrossRefGoogle Scholar
  3. Anderson NJ, Bugmann H, Dearing JA, Gaillard MJ (2006) Linking palaeoenvironmental data and models to understand the past and to predict the future. Trends Ecol Evol 21:696–704. doi: 10.1016/j.tree.2006.09.005 CrossRefPubMedGoogle Scholar
  4. Andrieu-Ponel V, Ponel P (1999) Human impact on Mediterranean wetland Coleoptera: an historical perspective at Tourves (Var, France). Biodiv Conserv 8:391–407CrossRefGoogle Scholar
  5. Andrieu-Ponel V, Ponel P, Bruneton H, Leveau P, de Beaulieu JL (2000) Palaeoenvironments and cultural landscapes of the last 2000 years reconstructed from pollen and Coleopteran records in the Lower Rhône Valley, southern France. The Holocene 10:341–355CrossRefGoogle Scholar
  6. Anthony EJ, Marriner N, Morhange C (2014) Human influence and the changing geomorphology of Mediterranean deltas and coasts over the last 6000 years: from progradation to destruction phase? Earth-Sci Rev 139:336–361. doi: 10.1016/j.earscirev.2014.10.003 CrossRefGoogle Scholar
  7. Balachowsky AS (1949) Faune de France 50. Coléoptères Scolitydae. Libr. Fac. Sci, ParisGoogle Scholar
  8. Bellard C, Leclerc C, Courchamps F (2013a) Impact of sea level rise on the 10 insular biodiversity hotspots. Glob Ecol Biogeogr 23:203–212. doi: 10.1111/geb.12093 CrossRefGoogle Scholar
  9. Bellard C, Leclerc C, Courchamps F (2013b) Potential impact of sea level rise on the French islands worldwide. Nat Conserv 5:75–86. doi: 10.3897/natureconservation.5.5533 CrossRefGoogle Scholar
  10. Beltrame C, Chazée L, Galewski T, Perennou C (2012) Mediterranean wetlands: outlook. First Mediterranean wetlands observatory report—Technical report—2012. Tour du Valat, FranceGoogle Scholar
  11. Beug HJ (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Verlag Friedrich Pfeil, MunichGoogle Scholar
  12. Blaauw M (2010) Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat Geochronol 5:512–518. doi: 10.1016/j.quageo.2010.01.002 CrossRefGoogle Scholar
  13. Buckland PI, Buckland PC (2006) BugsCEP Coleopteran ecology package. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series # 2006-116. NOAA/NCDC Paleoclimatology Program, Boulder CO, USA. URL:
  14. Caillol H (1908) Catalogue des Coléoptères de Provence d’après des documents recueillis et groupés, 1er partie. Société des Sciences Naturelles de Provence, MarseilleGoogle Scholar
  15. Chambers PA, Lacoul P, Murphy KJ, Thomaz SM (2008) Global diversity of aquatic macrophytes in freshwater. Hydrobiologia 595:9–26. doi: 10.1007/s10750-007-9154-6 CrossRefGoogle Scholar
  16. Cocquempot C, Rungs C (2009) Liste des Arthropodes terrestres recensés dans les réserves naturelles des îles Cerbicale et Lavezzi (France, Corse-du-Sud). Biocosme Mésogéen 26:1–56Google Scholar
  17. Coiffait H (1984) Coléoptères Staphylinides de la région paléartique occidentale, V, Sous famille Paederinae, Tribu Paederini 2, Sous famille Euaesthetinae. Nouv Rev Entomol Suppl 13:1–424Google Scholar
  18. Constantin R, Liberti G (2011) Coléoptères Dasytidae de France. Société linnéenne de Lyon, LyonGoogle Scholar
  19. Coope GR (1986) Coleoptera analysis. In: Berglund BE (ed) Handbook of holocene palaeoecology and palaeohydrology. Wiley, Chichester, pp 703–713Google Scholar
  20. Coord Tronquet M (2014) Catalogue des Coléoptères de France. Association Roussillonnaise d’Entomologie, PerpignanGoogle Scholar
  21. Courchamp F, Hoffman BD, Russell JC, Leclerc C, Bellard C (2014) Climate change, sea-level rise, and conservation: keeping island biodiversity afloat. Trends Ecol Evol 29:127–130. doi: 10.1016/j.tree.2014.01.001 CrossRefPubMedGoogle Scholar
  22. Delobel A, Delobel B (2003) Les plantes hôtes des bruches (Coleoptera Bruchidae) de la faune de France, une analyse critique. Bull mens Soc Linn Lyon 72:199–221CrossRefGoogle Scholar
  23. Delobel A, Tran M (1993) Les Coléoptères des denrées alimentaires entreposées dans les régions chaudes, Faune tropicale 32. CTA/Orstom Editions, ParisGoogle Scholar
  24. Faegri K, Iversen J (1989) Textbook of pollen analysis, 4th edn. Wiley, New YorkGoogle Scholar
  25. Galassi G, Spada G (2014) Sea-level rise in the Mediterranean Sea by 2050: roles of terrestrial ice melt, steric effects and glacial isostatic adjustment. Glob Planet Change 123:55–66. doi: 10.1016/j.gloplacha.2014.10.007 CrossRefGoogle Scholar
  26. Grimm EC (1987) CONISS: a fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computer Geosci 13:13–35CrossRefGoogle Scholar
  27. Guignot F (1947) Coléoptères Hydrocanthares, Faune de France 48. Paul Lechevalier, ParisGoogle Scholar
  28. Habid S, Yousuf A (2015) Effect of macrophytes on Phytophilous macroinvertebrate community: a review. J Entomol Zool Stud 3:377–384Google Scholar
  29. Hammer UT (1986) Saline Lake Ecosystems of the World. Junk W Publishers, DordrechtGoogle Scholar
  30. Hoffman A (1950) Coléoptères Curculionides (première partie). Faune de France, vol 52. Librairie de la Faculté des Sciences, ParisGoogle Scholar
  31. Hoffman A (1954) Coléoptères Curculionides (deuxième partie). Faune de France, vol 59. Fédération Française des Sociétés de Sciences Naturelles, ParisGoogle Scholar
  32. Hoffman A (1958) Coléoptères Curculionides (troisième partie). Faune de France, vol 62. Fédération Française des Sociétés de Sciences Naturelles, ParisGoogle Scholar
  33. Irmler U, Heller K, Meyer H, Reinke HD (2002) Zonation of ground beetles (Coleoptera: Carabidae) and spiders (Araneida) in salt marshes at the north and the Baltic sea and the impact of the predicted sea level increase. Biodiv Conserv 11:1129–1147CrossRefGoogle Scholar
  34. Jeannel R (1941) Coléoptères Carabiques première partie, Faune de France 39. Paul Lechevalier et Fils, ParisGoogle Scholar
  35. Jeannel R (1942) Coléoptères Carabiques deuxième partie, Faune de France 40. Paul Lechevalier et Fils, ParisGoogle Scholar
  36. Juggins S (2007) C2 Version 1.5 user guide. Software for ecological and palaeoecological data analysis and visualisation. Newcastle University Press, Newcastle upon TyneGoogle Scholar
  37. Juggins S (2012) The rioja package: Analysis of Quaternary Science Data, R package, version 0.7-3.
  38. Koch K (1989a) Die Käfer Mitteleuropas, Ökologie 1. Goecke and Evers, KrefeldGoogle Scholar
  39. Koch K (1989b) Die Käfer Mitteleuropas, Ökologie 2. Goecke and Evers, KrefeldGoogle Scholar
  40. Koch K (1992) Die Käfer Mitteleuropas, Ökologie 3. Goecke and Evers, KrefeldGoogle Scholar
  41. Laborel J, Morhange C, Lafont R, Le Campion J, Laborel-Deguen F, Sartoretto S (1994) Biological evidence of sea-level rise during the last 4500 years on the rocky coasts of continental southwestern France and Corsica. Mar Geol 120:203–223. doi: 10.1016/0025-3227(94)90059-0 CrossRefGoogle Scholar
  42. Lambeck K, Purcell A (2005) Sea-level change in the Mediterranean sea since the LGM: model predictions for tectonically stable areas. Quat Sci Rev 24:1969–1988. doi: 10.1016/j.quascirev.2004.06.025 CrossRefGoogle Scholar
  43. Magny M, Vannière B, Zanchetta G, Fouache E, Touchais G, Petrika L, Coussot C, Walter-Simonnet AV, Arnaud F (2009) Possible complexity of the climatic event around 4300–3800 cal. BP in the central and western Mediterranean. The Holocene 19:823–833. doi: 10.1177/0959683609337360 CrossRefGoogle Scholar
  44. Magny M, Combourieu-Nebout N, de Beaulieu JL et al (2013) North-south palaeohydrological contrasts in the central Mediterranean during the Holocene: tentative synthesis and working hypotheses. Clim Past 9:2043–2071. doi: 10.5194/cp-9-2043-2013 CrossRefGoogle Scholar
  45. Magurran AE, Baillie SR, Buckland ST, Dick JM, Elston DA, Marian Scott E, Smith RI, Somerfield PJ, Watt AD (2010) Long-term datasets in biodiversity research and monitoring: assessing change in ecological communities through time. Trends Ecol Evol 25:574–582. doi: 10.1016/j.tree.2010.06.016 CrossRefPubMedGoogle Scholar
  46. Médail F (2013) The unique nature of Mediterranean island floras and the future of plant conservation. In: Cardona Pons E, Estaún Clarisó I, Comas Casademont M, Fraga i Arguimbau P (eds) Islands and plants: preservation and understanding of flora on Mediterranean islands. 2nd Botanical Conference in Menorca. Consell Insular de Menorca, Institut Menorquí d’Estudis, Recerca 20, Menorca, pp 325–350Google Scholar
  47. Médail F, Ponel P, Brousset L, Poher Y, Master SET SBEM students (Aix Marseille University) (2014). Contributions à l’inventaire de la biodiversité terrestre de l’île de Cavallo (Archipel Lavezzi, Bonifacio, Corse du Sud). Note naturaliste, Initiative pour les Petites Îles de Méditerranée (PIM).
  48. Médail F, Ponel P, Rivière V, Master SET SBEM students (Aix Marseille University) (2015). Contributions à l’inventaire des arthropodes terrestres et aquatiques sur l’île de Cavallo (Archipel Lavezzi, Bonifacio, Corse du Sud). Note naturaliste, Initiative pour les Petites Îles de Méditerranée (PIM).
  49. Médail F, Myers N (2004) Mediterranean Basin. In: Mittermeier RA, Robles Gil P, Hoffmann M, Pilgrim J, Brooks T, Mittermeier CG, Lamoreux J, da Fonseca GAB (eds) Hotspots revisited: earth’s biologically richest and most endangered terrestrial eco regions. CEMEX, Monterrey, Conservation International, Washington, pp 144–147Google Scholar
  50. Morhange C, Laborel J, Hesnard A (2001) Changes of relative sea level during the past 5000 years in the ancient harbor of Marseilles, Southern France. Palaeogeogr Palaeoclimatol Palaeoecol 166:319–329CrossRefGoogle Scholar
  51. Nicholls RJ, Woodroffe C, Burkett V (2016) Coastal degradation as an indicator of global change. In: Letcher T (ed) Climate change: observed impacts on planet earth, 2nd edn. Elsevier Press, Oxford, pp 309–324CrossRefGoogle Scholar
  52. Paulian R, Baraud J (1982) In: Lechevalier S.A.R.L (ed) Faune des Coléoptères de France, vol 2. Lucanoidea et Scarabaeoidae. Encyclopédie Entomologique 43 ParisGoogle Scholar
  53. Peyron O, Magny M, Goring S et al (2013) Contrasting patterns of climatic changes during the Holocene across the Italian Peninsula reconstructed from pollen data. Clim Past 9:1233–1252. doi: 10.5194/cp-9-1233-2013 CrossRefGoogle Scholar
  54. Pielou E (1966) The measurement of diversity in different types of biological collections. J Theor Biol 13:131–144CrossRefGoogle Scholar
  55. Pinder AM, Halse SA, McRae JM, Shiel RJ (2005) Occurrence of aquatic invertebrates of the wheat belt region of western Australia in relation to salinity. Hydrobiologia 543:1–24. doi: 10.1007/s10750-004-5712-3 CrossRefGoogle Scholar
  56. PIM initiative: Initiative pour les petites îles de Méditerranée.
  57. Poirier C, Sauriau PG, Chaumillon E, Bertin X (2010) Influence of hydro-sedimentary factors on mollusc death assemblages in a temperate mixed tide-and-wave dominated coastal environment: implications for the fossil record. Cont Shelf Res 30:1876–1890. doi: 10.1016/j.csr.2010.08.015 CrossRefGoogle Scholar
  58. Ponel P, Gandouin E, Coope GR, Andrieu-Ponel V, Guiter F, Van Vliet-Lanoë B, Franquet E, Brocandel M, Brulhet J (2007) Insect evidence for environmental and climate changes from Younger Dryas to Sub-Boreal in a river floodplain at St-Momelin (St-Omer basin, northern France), Coleoptera and Trichoptera. Palaeogeogr Palaeoclimatol Palaeoecol 245:483–504. doi: 10.1016/j.palaeo.2006.09.005 CrossRefGoogle Scholar
  59. R Development Core Team R (2011) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna.
  60. Reille M (1984) Origine de la végétation actuelle de la Corse sud-orientale; analyse pollinique de cinq marais côtiers. Pollen Spores 26:43–60Google Scholar
  61. Reille M (1992) New pollen-analytical researches in Corsica: the problem of Quercus ilex L. and Erica arborea L., the origin of Pinus halepensis Miller forests. New Phytol 122:359–378CrossRefGoogle Scholar
  62. Reille M (1999) Pollen et spores d’Europe et d’Afrique du Nord, 2nd edn. Laboratoire de Botanique Historique et Palynologie, MarseilleGoogle Scholar
  63. Ribera I (2000) Biogeography and conservation of Iberian water beetles. Biol Conserv 92:131–150CrossRefGoogle Scholar
  64. Saint-Claire Deville J (1914) Catalogue critique des coléoptères de la Corse. Imprimerie Adeline, Poisson G et Cie, CaenCrossRefGoogle Scholar
  65. Schallenberg M, Hall CJ, Burns CW (2003) Consequences of climate-induced salinity increases on zooplankton abundance and diversity in coastal lakes. Mar Ecol Prog Ser 251:181–189CrossRefGoogle Scholar
  66. Shannon CE, Weaver W (1964) The mathematical theory of communication. University of Illinois Press, UrbanaGoogle Scholar
  67. Soldati F, Coache A (2005) Faunistique des Coléoptères Tenebrionidae de Corse, résultats d’une deuxième champagne de prospections. Bull Soc Linn Bordeaux 33:79–98Google Scholar
  68. Thérond J (1975–1976) Catalogue des Coléoptères de la Camargue et du Gard I, II. Société d’Étude des Sciences Naturelles de Nîmes, NîmesGoogle Scholar
  69. Thomaz SM, Ribiero da Cunha E (2010) The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages’ composition and biodiversity. Acta Limnol Bras 22:218–236. doi: 10.4322/actalb.02202011 CrossRefGoogle Scholar
  70. Vacchi M, Marriner N, Morhange C, Spada G, Fontana A, Rovere A (2016) Multiproxy assessment of Holocene relative sea-level changes in the western Mediterranean: sea-level variability and improvements in the definition of the isostatic signal. Earth-Sci Rev 155:172–197. doi: 10.1016/j.earscirev.2016.02.002 CrossRefGoogle Scholar
  71. Vannière B, Power MJ, Roberts N et al (2011) Circum-Mediterranean fire activity and climate changes during the mid-Holocene environmental transition (8500–2500 cal. BP). The Holocene 21:53–75. doi: 10.1177/0959683610384164 CrossRefGoogle Scholar
  72. Velasco J, Millán A, Hernández J, Gutiérrez C, Abellán P, Sánchez D, Ruiz M (2006) Response of biotic communities to salinity changes in a Mediterranean hypersaline stream. Saline Syst 2:12. doi: 10.1186/1746-1448-2-12 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Vella C, Provansal M (2000) Relative sea-level rise and neotectonic events during the last 6500 yr on the southern eastern Rhône delta, France. Mar Geol 170:27–39CrossRefGoogle Scholar
  74. Virah-Sawmy M, Willis KJ, Gillson L (2009) Threshold response of Madagascar’s littoral forest to sea-level rise. Global Ecol Biogeogr 18:98–110. doi: 10.1111/j.1466-8238.2008.00429.x CrossRefGoogle Scholar
  75. Walker PD, Wijnhoven S, van der Velde G (2013) Macrophyte presence and growth form influence macro invertebrate community structure. Aquat Bot 104:80–87. doi: 10.1016/j.aquabot.2012.09.003 CrossRefGoogle Scholar
  76. Willis KJ, Bailey RM, Bhagwat SA, Birks HJB (2010) Biodiversity baselines, thresholds and resilience: testing predictions and assumptions using palaeoecological data. Trends Ecol Evol 25:583–591. doi: 10.1016/j.tree.2010.07.006 CrossRefPubMedGoogle Scholar
  77. Wong PP, Losada IJ, Gattuso JP, Hinkel J, Khattabi A, McInnes KL, Saito Y, Sallenger A (2014) Coastal systems and low-lying areas. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy ES, MacCraken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation and vulnerability. Part A: global and sectoral aspects. contribution of working group II to the Fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  78. Woodroffe CD, Murray-Wallace CV (2012) Sea-level rise and coastal change: the past as a guide to the future. Quat Sci Rev 54:4–11. doi: 10.1016/j.quascirev.2012.05.009 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Yoann Poher
    • 1
    Email author
  • Philippe Ponel
    • 1
  • Frédéric Guiter
    • 1
  • Valérie Andrieu-Ponel
    • 1
  • Frédéric Médail
    • 1
  1. 1.Aix Marseille Univ, Univ Avignon, CNRS, IRD, IMBEMarseilleFrance

Personalised recommendations