Skip to main content
Log in

Using DNA barcode to relate landscape attributes to small vertebrate roadkill

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Large vertebrates are the main focus of roadkill studies because their greater size facilitates taxonomic identification and the collection of statistical data. However, these studies fail to effectively include and identify small vertebrates and correlate roadkill events with the surrounding landscape. Here we showed the effectiveness of molecular data to identify small vertebrate roadkill, and we correlated landscape structure attributes with the location of roadkill for functional groups of varying mobility. The extraction of DNA from roadkilled individuals was followed by the amplification of two mitochondrial genes. We compared each DNA sequence to a database and used the highest similarity values for species identification. The species were classified according to their taxa and degree of mobility: birds, reptilia and amphibia with low and intermediate movement capability. After calculating the landscape attributes for each roadkill point, we used a competing model approach based on Akaike Information Criteria to determine which landscape variable best explained the occurrence of roadkills. Combining molecular and morphological characteristics, we identified 82.93% of the roadkilled animals. DNA barcoding allowed the identification of 310% more specimens than by morphological characteristics alone. Roadkilled birds with intermediate movement capability were strongly influenced by dominated areas by agriculture and sugar cane monocultures. Roadkilled reptiles with low movement capability were positively correlated with the presence of forest remnants, while those with intermediate movement capability seemed to be more frequent in heavily anthropized landscapes. We showed that molecular data is a powerful tool for precisely identifying small-sized roadkilled animals. Our results also highlight that different landscape structure attributes enable the prediction of roadkill occurrence along roads, which in turn allows us to identify roadkill hotspots and plan appropriate mitigation actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Administration FH (2002) FHWA website. http://international.fhwa.dot.gov/wildlife_web.cfm

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723. doi:10.1109/TAC.1974.1100705

    Article  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Anon (1980) Illinois snake crossing has traffic in a slither N Ohio Ass Herpetol 7

  • Ayres M, Ayres Jr M, Ayres DL, Santos AS (2007) Bioestat Versão 5.0

  • Bager A, Fontoura V (2013) Evaluation of the effectiveness of a wildlife roadkill mitigation system in wetland habitat. Ecol Eng 53:31–38. doi:10.1016/j.ecoleng.2013.01.006

    Article  Google Scholar 

  • Balkenhol N, Waits LP (2009) Molecular road ecology: exploring the potential of genetics for investigating transportation impacts on wildlife. Mol Ecol 18:4151–4164. doi:10.1111/j.1365-294X.2009.04322.x

    Article  PubMed  Google Scholar 

  • Beebee TJ (2013) Effects of road mortality and mitigation measures on amphibian populations. Conserv Biol 27:657–668

    Article  PubMed  Google Scholar 

  • Boscolo D, Metzger JP (2011) Isolation determines patterns of species presence in highly fragmented landscapes. Ecography 34:1018–1029. doi:10.1111/j.1600-0587.2011.06763.x

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multi-model inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Carr LW, Fahrig L (2001) Effect of road traffic on two amphibian species of differing vagility. Conserv Biol 15:1071–1078

    Article  Google Scholar 

  • Ciocheti G (2014) Spatial and temporal influences of road duplication on wildlife road kill using habitat suitability models. Universidade Federal de São Carlos

  • Ciocheti G, Assis JC, Ribeiro JW, Ribeiro MC Highway duplication and underpass influences on vertebrate road mortality, in review

  • Clark RW, Brown WS, Stechert R, Zamudio KR (2010) Roads, interrupted dispersal, and genetic diversity in timber rattlesnakes. Conserv Biol 24:1059–1069

    Article  PubMed  Google Scholar 

  • Cleaveland S, Laurenson M, Taylor L (2001) Diseases of humans and their domestic mammals: pathogen characteristics, host range and the risk of emergence. Philos Trans R Soc B 356:991–999

    Article  CAS  Google Scholar 

  • Clevenger AP, Chruszcz B, Gunson KE (2003) Spatial patterns and factors influencing small vertebrate fauna roadkill aggregations. Biol Conserv 109:15–26

    Article  Google Scholar 

  • Coffin AW (2007) From roadkill to road ecology: a review of the ecological effects of roads. J Transp Geogr 15:396–406

    Article  Google Scholar 

  • Da Silveira NS, Niebuhr BBS, Muylaert RdL, Ribeiro MC, Pizo MA (2016) Effects of land cover on the movement of frugivorous birds in a heterogeneous landscape. PLoS ONE 11:e0156688. doi:10.1890/15-1757.1

    Article  PubMed  PubMed Central  Google Scholar 

  • Dale MR, Fortin M-J (2014) Spatial analysis: a guide for ecologists. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Dekker JJ, Bekker HG (2010) Badger (Meles meles) road mortality in the Netherlands: the characteristics of victims and the effects of mitigation measures. Lutra 53:81–92

    Google Scholar 

  • Dornas RAP, Kindel A, Bager A, Freitas SR (2012) Avaliação da mortalidade de vertebrados em rodovias no Brasil. In: Bager A (ed) Ecologia de estradas: tendências e pesquisas. UFLA, Lavras

    Google Scholar 

  • Dos Reis NR, Peracchi AL, Pedro WA, Lima IP (2011) Mamíferos do Brasil; Mammals of Brazil. Universidade Estadual de Londrina, Londrina

    Google Scholar 

  • ESRI (2007) ArcGis, the complete geographical information system, 9.1st edn. ESRI Press, Redlands

    Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Ann Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Fahrig L (2007) Non-optimal animal movement in human-altered landscapes. Funct Ecol 21:1003–1015

    Article  Google Scholar 

  • Fahrig L, Rytwinski T (2009) Effects of roads on animal abundance: an empirical review and synthesis. Ecol Soc 14:21

    Article  Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech 3:294–299

    CAS  Google Scholar 

  • Forester DC, Snodgrass JW, Marsalek K, Lanham Z (2006) Post-breeding dispersal and summer home range of female American toads (Bufo americanus). Northeast Nat 13:59–72

    Article  Google Scholar 

  • Forman RT, Alexander LE (1998) Roads and their major ecological effects. Ann Rev Ecol Syst 28:207–231

    Article  Google Scholar 

  • Glista DJ, DeVault TL, DeWoody JA (2008) Vertebrate road mortality predominantly impacts amphibians. Herpetol Conserv Biol 3:77–87

    Google Scholar 

  • Gomes L, Grilo C, Silva C, Mira A (2009) Identification methods and deterministic factors of owl roadkill hotspot locations in Mediterranean landscapes. Ecol Res 24:355–370. doi:10.1007/s11284-008-0515-z

    Article  Google Scholar 

  • Goosem M (2001) Effects of tropical rainforest roads on small mammals: inhibition of crossing movements. Wildl Res 28:351–364. doi:10.1071/WR99093

    Article  Google Scholar 

  • Gorman ML, Raffaelli D (2008) The functional role of wild mammals in agricultural ecosystems. Mamm Rev 38:220–230

    Article  Google Scholar 

  • Hall T (2004) Bioedit sequence alignment editor, 7.0.0. edn.,

  • Hawbaker TJ, Radeloff VC, Clayton MK, Hammer RB, Gonzalez-Abraham CE (2006) Road development, housing growth, and landscape fragmentation in northern Wisconsin: 1937-1999. Ecol Appl 16:1222–1237

    Article  PubMed  Google Scholar 

  • Hebert PD, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci USA 101:14812–14817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Indermaur L, Gehring M, Wehrle W, Tockner K, Naef-Daenzer B (2009) Behavior-based scale definitions for determining individual space use: requirements of two amphibians. Am Nat 173:60–71

    Article  PubMed  Google Scholar 

  • Jackson ND, Fahrig L (2011) Relative effects of road mortality and decreased connectivity on population genetic diversity. Biol Conserv 144:3143–3148

    Article  Google Scholar 

  • Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19:101–108

    Article  PubMed  Google Scholar 

  • Jones ME (2000) Road upgrade, road mortality and remedial measures: impacts on a population of eastern quolls and Tasmanian devils. Wildl Res 27:289–296

    Article  Google Scholar 

  • Klink CA, Machado RB (2005) Conservation of the Brazilian cerrado. Conserv Biol 19:707–713

    Article  Google Scholar 

  • Klippel AH et al (2015) Using DNA barcodes to identify road-killed animals in two atlantic forest nature reserves, Brazil. PLoS ONE 10:e0134877

    Article  PubMed  PubMed Central  Google Scholar 

  • Kociolek A, Clevenger A, St Clair C, Proppe D (2011) Effects of road networks on bird populations. Conserv Biol 25:241–249

    CAS  PubMed  Google Scholar 

  • Langen TA, Ogden KM, Schwarting LL (2009) Predicting hot spots of herpetofauna road mortality along highway networks. J Wildl Manag 73:104–114. doi:10.2193/2008-017

    Article  Google Scholar 

  • Laurance WF, Goosem M, Laurance SG (2009) Impacts of roads and linear clearings on tropical forests. Trends Ecol Evol 24:659–669

    Article  PubMed  Google Scholar 

  • Martensen AC, Ribeiro MC, Banks-Leite C, Prado PI, Metzger JP (2012) Associations of forest cover, fragment area, and connectivity with Neotropical understory bird species richness and abundance. Conserv Biol 26:1100–1111

    Article  PubMed  Google Scholar 

  • Mendes CP, Ribeiro MC, Galetti M (2015) Patch size, shape and edge distance influence seed predation on a palm species in the Atlantic forest. Ecography 39:465–475. doi:10.1111/ecog.01592

    Article  Google Scholar 

  • Miotto RA, Desbiez A, Ferraz K Viability of a top predator, the puma (Puma concolor), in a human-dominated landscape in Brazil, in review

  • Munshi-South J (2012) Urban landscape genetics: canopy cover predicts gene flow between white-footed mouse (Peromyscus leucopus) populations in New York City. Mol Ecol 21:1360–1378

    Article  PubMed  Google Scholar 

  • Muylaert RL, Stevens RD, Ribeiro MC (2016) Threshold effect of habitat loss on bat richness in cerrado-forest landscapes. Ecol Appl. doi:10.1890/15-1757.1

    PubMed  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Palumbi S, Martin A, Romano S, McMillan W, Stice L, Grabowski G (1991) The simple fool’s guide to PCR, version 2.0, privately published document compiled by S. Palumbi. Dept Zoology, Univ Hawaii, Honolulu

  • Perry G, Garland T Jr (2002) Lizard home ranges revisited: effects of sex, body size, diet, habitat, and phylogeny. Ecology 83:1870–1885

    Article  Google Scholar 

  • Ramp D, Caldwell J, Edwards KA, Warton D, Croft DB (2005) Modelling of wildlife fatality hotspots along the snowy mountain highway in New South Wales. Aust Biol Conserv 126:474–490

    Article  Google Scholar 

  • Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153

    Article  Google Scholar 

  • Ribeiro MC et al (2016) Dealing with Fragmentation and Road Effects in Highly Degraded and Heterogeneous Landscapes. In: Gheler-Costa C, Lyra-Jorge MC, Martins Verdade L (eds) Biodiversity in agricultural landscapes of southeastern Brazil. De Gruyter Open, Warsaw, pp 43–64. doi:10.1515/9783110480849-006

    Google Scholar 

  • Riley SP, Pollinger JP, Sauvajot RM, York EC, Bromley C, Fuller TK, Wayne RK (2006) A southern California freeway is a physical and social barrier to gene flow in carnivores. Mol Ecol 15:1733–1741. doi:10.1111/j.1365-294X.2006.02907.x

    Article  CAS  PubMed  Google Scholar 

  • Rytwinski T, Fahrig L (2012) Do species life history traits explain population responses to roads? A meta-analysis. Biol Conserv 147:87–98

    Article  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2a edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci 74:5463–5467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawaya RJ, Marques OAV, Martins M (2008) Composition and natural history of a Cerrado snake assemblage at Itirapina, São Paulo state, southeastern Brazil. Biota Neotrop 8:127–149

    Article  Google Scholar 

  • SBH SBdH (2010) Brazilian amphibians—list of species. Sociedade Brasileira de Herpetologia. http://www.sbherpetologia.org.br

  • Secco H, Ratton P, Castro E, da Silva PL, Bager A (2014) Intentional snake road-kill: a case study using fake snakes on a Brazilian road. Trop Conserv Sci 7:561–571

    Article  Google Scholar 

  • Shepard DB, Dreslik MJ, Jellen BC, Phillips CA (2008) Reptile road mortality around an oasis in the Illinois corn desert with emphasis on the endangered eastern massasauga. Copeia 2008:350–359. doi:10.1643/CE-06-276

    Article  Google Scholar 

  • Simmons JM, Sunnucks P, Taylor AC, van der Ree R (2010) Beyond roadkill, radiotracking, recapture and FST—a review of some genetic methods to improve understanding of the influence of roads on wildlife. Ecol Soc 15:9

    Article  Google Scholar 

  • Smith M, Poyarkov NA, Hebert PD (2008) DNA barcoding: CO1 DNA barcoding amphibians: take the chance, meet the challenge. Mol Ecol Res 8:235–246

    Article  CAS  Google Scholar 

  • Sork VL, Smouse PE (2006) Genetic analysis of landscape connectivity in tree populations. Landsc Ecol 21:821–836

    Article  Google Scholar 

  • Souza D (1998) Todas as Aves do Brasil—Guia de campo para Identificação. Feira de Santana

  • Stoeckle M (2003) Taxonomy, DNA, and the bar code of life. BioScience 53:796–797

    Article  Google Scholar 

  • Taylor BD, Goldingay RL (2010) Roads and wildlife: impacts, mitigation and implications for wildlife management in Australia. Wildl Res 37:320–331

    Article  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680. doi:10.1093/nar/22.22.4673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vences M, Thomas M, Bonett RM, Vieites DR (2005a) Deciphering amphibian diversity through DNA barcoding: chances and challenges. Philos Trans R Soc B 360:1859–1868

    Article  CAS  Google Scholar 

  • Vences M, Thomas M, Van der Meijden A, Chiari Y, Vieites DR (2005b) Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians. Front Zool 2:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Zuberogoitia I et al (2015) Testing pole barriers as feasible mitigation measure to avoid bird vehicle collisions (BVC). Ecol Eng 83:144–151. doi:10.1016/j.ecoleng.2015.06.026

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Manoel Martins Dias Filho and Mercival Roberto Francisco for help with morphological animal identification. This research is part of the SISBIOTA Top Predators network. Karen Rodríguez-C and Pedro M. Galetti Jr thank the Brazilian agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for financial support. Milton Cezar Ribeiro is funded by FAPESP (process 2013/50421-2) and CNPq research grants. We thank M. King, a native English speaker from Canada, for proofreading the manuscript. Authors also thank anonymous reviewers for their useful comments and suggestions on previous versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Giselle Rodríguez-Castro.

Additional information

Communicated by Kirsty Park.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Castro, K.G., Ciocheti, G., Ribeiro, J.W. et al. Using DNA barcode to relate landscape attributes to small vertebrate roadkill. Biodivers Conserv 26, 1161–1178 (2017). https://doi.org/10.1007/s10531-017-1291-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-017-1291-2

Keywords

Navigation