Biodiversity and Conservation

, Volume 26, Issue 5, pp 1121–1141 | Cite as

Case study of the implications of climate change for lichen diversity and distributions

  • Marta Rubio-Salcedo
  • Achilleas Psomas
  • María Prieto
  • Niklaus E. Zimmermann
  • Isabel Martínez
Original Paper


There is ample evidence for species distributional changes in response to recent climate change, but most studies are biased toward better known taxa. Thus, an integrated approach is needed that includes the “cryptic diversity” represented partly by lichens, which are among the most sensitive organisms to environmental change due to their physiological characteristics. The use of functional traits and ecological attributes may improve the interpretation of how species respond to climate change. Thus, we quantified the future climate change impacts on 41 lichen species distributed in the Iberian Peninsula using ensemble climatic suitability maps (derived from generalized linear and generalized additive models, and classification and regression tree analysis) and different metrics. We also determined the lichen traits/attributes that might be related to a shared response to climate change. The results indicated a loss of bioclimatic space for 75% of the species studied and an increase for 10 species, especially in Mediterranean ones. Most of the species that will lose more than 70% of their current modeled distribution area comprised big macrolichens with cyanobacteria as the photobiont, thereby indicating a great biomass loss in forests, which might affect nutrient cycles. We also found that the predicted distributions were trait-related. Smaller species, green-algae lichens, and saxicolous and epiphyte species will respond better to future climate change. The results of this type of study may help to identify the species that are most vulnerable to climate change and facilitate the development of conservation measures to avoid their decline.


Climatic suitability map Exposure Future distribution area Susceptibility 



We thank two anonymous referees and the associate editor of this journal for their helpful comments. This research was supported by the Spanish Ministry of Education and Science (BIOFRAG, CGL2007-66066-C04-04) and partially by the Ministries of Science and Innovation (EPICON, CGL2010 -22049), and Economy (EPIDIVERSITY, CGL2013-47010-P), the Madrid Autonomous Region, and the European Union (FEDER Founding) (REMEDINAL2-CM, S2009/AMB-1783). This study was also supported by a Ph.D. Grant awarded by the Spanish Education Ministry to M. Rubio-Salcedo.

Supplementary material

10531_2016_1289_MOESM1_ESM.doc (152 kb)
Supplementary material 1 (DOC 152 kb)


  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723CrossRefGoogle Scholar
  2. Alam MA (2014) Growth chamber experiments on lichens. Temperature and humidity regimes rapidly shape growth rates and carbohydrate contents. Master Thesis. Norwegian University of Life SciencesGoogle Scholar
  3. Allen JL, Lendemer JC (2016) Climate change impacts on endemic, high-elevation lichens in a biodiversity hotspot. Biodivers Conserv 25:555–568CrossRefGoogle Scholar
  4. Angert LA, Crozier LG, Rissler LE, Gilman SE, Tewksbury JJ, Chunco AJ (2011) Do species’ traits predict recent shifts at expanding range edges? Ecol Lett 14:677–689PubMedCrossRefGoogle Scholar
  5. Aptroot A, van Herk CM (2002) Lichens and global warming. Int Lichenol Newsl 35:57–58Google Scholar
  6. Aptroot A, van Herk CM (2007) Further evidence of the effects of global warming on lichens, particularly those with Trentepohlia phycobionts. Environ Pollut 146:293–298PubMedCrossRefGoogle Scholar
  7. Aragón G, Otálora MAG (2004) Ecological and chorological novelties of the genus Leptogium in the Iberian Peninsula. Nova Hedwig 78:353–366CrossRefGoogle Scholar
  8. Aragón G, Sarrión FJ, Martínez I (2004) Epiphytic lichens on Juniperus oxycedrus in the Iberian Peninsula. Nova Hedwig 78:45–56CrossRefGoogle Scholar
  9. Aragón G, Otálora MAG, Martínez I (2005) New data of the genus Leptogium (ascomycetes lichenized) in the Iberian Peninsula. Nova Hedwig 80:199–226CrossRefGoogle Scholar
  10. Aragón G, Martínez I, Izquierdo P, Belinchón R, Escudero A (2010) Effects of forest management on epiphytic lichen diversity in Mediterranean forests. Appl Veg Sci 13:183–194CrossRefGoogle Scholar
  11. Aragón G, Martínez I, García A (2012) Loss of epiphytic diversity along a latitudinal gradient in southern Europe. Sci Total Environ 426:188–195PubMedCrossRefGoogle Scholar
  12. Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47PubMedCrossRefGoogle Scholar
  13. Araújo MB, Peterson T (2012) Uses and misuses of bioclimatic envelope modeling. Ecology 93:1527–1539PubMedCrossRefGoogle Scholar
  14. Araújo MB, Pearson R, Thuiller W, Erhard M (2005) Validation of species–climate impact models under climate change. Glob Change Biol 11:1–10CrossRefGoogle Scholar
  15. Asplund J, Wardle DA (2013) The impact of secondary compounds and functional characteristics on lichen palatability and decomposition. J Ecol 101:689–700CrossRefGoogle Scholar
  16. Bailey SA, Haines-Young RH, Watkins C (2002) Species presence in fragmented landscapes: modelling of species requirements at the national level. Biol Conserv 108:307–316CrossRefGoogle Scholar
  17. Baniya CB, Rai H, Upreti DK (2014) Terricolous lichens in Himalayas: patterns of species richness along elevation gradient. In: Rai H, Upreti DK (eds) Terricolous lichens in India. Springer, New York, pp 33–52CrossRefGoogle Scholar
  18. Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012) Electing pseudo-absences for species distribution models: how, where and how many? Methods Ecol Evol 3:327–338CrossRefGoogle Scholar
  19. Barreno E, Vázquez VM (1981) Coelocaulon crespoae Barreno & Vázquez sp. nova (Lichenes). Notas sobre la flora liquénica de brezales españoles. Lazaroa 3:235–246Google Scholar
  20. Barrera-Escoda A, Gonçalves M, Guerreiro D, Cuniellera J, Baldasano JM (2014) Projections of temperature and precipitation extremes in the North-Western Mediterranean Basin by dynamical downscaling of climate scenarios at high-resolution (1971–2050). Clim Change 122:567–582CrossRefGoogle Scholar
  21. Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377PubMedPubMedCentralCrossRefGoogle Scholar
  22. Benito MG, Sánchez de Dios R, Sainz HO (2008) Effects of climate change on the distribution of Iberian trees species. Appl Veg Sci 11:169–178CrossRefGoogle Scholar
  23. Branquinho C, Matos P, Pinho P (2015) Lichens as ecological indicators to track atmospheric changes: future challenges. In: Lindenmayer D, Barton P, Pierson J (eds) Indicators and surrogates of biodiversity and environmental change. CSIRO Publishing, CRC Press, MelbourneGoogle Scholar
  24. Breiman L, Friedman JH, Olshen RA et al (1984) Classification and regression trees. Chapman & Hall, New YorkGoogle Scholar
  25. Bruun HH, Moen J, Virtanen R, Grytnes J-A, Oksanen L, Angerbjörn A (2006) Effects of altitude and topography on species richness of vascular plants, bryophytes and lichens in alpine communities. J Veg Sci 17:37–46CrossRefGoogle Scholar
  26. Büdel B, Scheidegger C (2008) Thallus morphology and anatomy. In: Nash TH III (ed) Lichen biology. Cambridge University Press, Cambridge, pp 40–68CrossRefGoogle Scholar
  27. Burgaz AR, Ahti T (2009) Flora Liquenológica Ibérica. In: Cladoniaceae, Vol 4. Sociedad Española de Liquenología, SEL, MadridGoogle Scholar
  28. Burgaz AR, Martínez I (2003) Flora liquenológica ibérica. Peltigerales: lobariaceae, nephromataceae, peltigeraceae. Sociedad Española de Liquenología, SEL, MurciaGoogle Scholar
  29. Busby JR (1991) BIOCLIM a bioclimate analysis and prediction system. Plant Prot Q 6:8–9Google Scholar
  30. Carballal R, Paz-Bermúdez G, López de Silanes ME, Pérez Valcárcel C (2010) Flora liquenológica ibérica. Pannariaceae. Sociedad Española de Liquenología, SEL, PontevedraGoogle Scholar
  31. Carter GM, Stolen ED, Breininger DR (2006) A rapid approach to modeling species–habitat relationships. Biol Conserv 127:237–244CrossRefGoogle Scholar
  32. Chefaoui RM, Lobo JM (2008) Assessing the effects of pseudo-absences on predictive distribution model performance. Ecol Model 210:478–486CrossRefGoogle Scholar
  33. Chen I, Hill JK, Ohlemüller R, Roy DB et al (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026PubMedCrossRefGoogle Scholar
  34. Cogoni A, Brundu G, Zedda L (2011) Diversity and ecology of terricolous bryophyte and lichen communities in coastal areas of Sardinia (Italy). Nova Hedwig 92:159–175CrossRefGoogle Scholar
  35. Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46CrossRefGoogle Scholar
  36. Colesie C, Green TGA, Haferkamp I, Büdel B (2014) Habitat stress initiates changes in composition, CO2 gas exchange and C-allocation as life traits in biological soil crusts. ISME J 8:2104–2115PubMedPubMedCentralCrossRefGoogle Scholar
  37. Comisión de Coordinación de Políticas de Cambio Climático (2007) El cambio climático en España. Estado de situación. Documento Resumen. Ministerio de Agricultura, Alimentación y Medio Ambiente, MadridGoogle Scholar
  38. Concostrina-Zubiri L, Pescador DS, Martínez I, Escudero A (2014a) Climate and small scale factors determine functional diversity shifts of biological soil crusts in Iberian drylands. Biodivers Conserv 23:1757–1770CrossRefGoogle Scholar
  39. Concostrina-Zubiri L, Martínez I, Rabasa SG, Escudero A (2014b) The influence of environmental factors on biological soil crust: from a community perspective to a species level. J Veg Sci 25:503–513CrossRefGoogle Scholar
  40. Cornelissen JHC, Lang SI, Soudzilovskia NA et al (2007) Comparative cryptogam ecology, a review of bryophyte and lichen traits that drive biogeochemistry. Ann Bot London 99:987–1001CrossRefGoogle Scholar
  41. Costa M, Morla C, Sáinz H (eds) (2005) Los montes ibéricos, una interpretación geobotánica. Editorial Planeta, BarcelonaGoogle Scholar
  42. Crespo A, Vězda A (1985) Pertusaria paramerae sp. nov., un liquen epífito de los sabinares españoles. Anales Jard Bot Madrid 41:251–255Google Scholar
  43. Diamond SE, Frame AM, Martin R, Buckley LB (2011) Species’ traits predict phenological responses to climate change in butterflies. Ecology 92:1005–1012PubMedCrossRefGoogle Scholar
  44. Edman M, Eriksson AM, Villard MA (2008) Effects of selection cutting on the abundance and fertility of indicator lichens Lobaria pulmonaria and Lobaria quercizans. J Appl Ecol 45:26–33CrossRefGoogle Scholar
  45. Eldridge DJ, Rosentreter R (1999) Morphological groups, a framework for monitoring microphytic crusts in arid landscapes. J Arid Environ 41:11–25CrossRefGoogle Scholar
  46. Ellis CJ (2012) Lichen epiphyte diversity: a species, community and trait-based review. Perspect Plant Ecol 14:131–152CrossRefGoogle Scholar
  47. Ellis CJ (2013) A risk-based model of climate change threat: hazard, exposure and vulnerability in the ecology of lichen epiphytes. Botany 91:1–11CrossRefGoogle Scholar
  48. Ellis CJ (2015) Ancient woodland indicators signal the climate change risk for dispersal-limited species. Ecol Indic 53:106–114CrossRefGoogle Scholar
  49. Ellis CJ, Coppins BJ (2006) Contrasting functional traits maintain lichen epiphyte diversity in response to climate and autogenic succession. J Biogeogr 33:1643–1656CrossRefGoogle Scholar
  50. Ellis CJ, Coppins BJ, Dawson TP, Seaward MRD (2007a) Response of British lichens to climate change scenarios, trends and uncertainties in the projected impact for contrasting biogeographic groups. Biol Conserv 140:217–235CrossRefGoogle Scholar
  51. Ellis CJ, Coppins BJ, Dawson TP (2007b) Predicted response of lichen epiphyte Lecanora populicola to climate change scenarios in clean-air region of Northern Britain. Biol Conserv 135:396–404CrossRefGoogle Scholar
  52. Ellis CJ, Eaton S, Theodoropoulos M, Coppins BJ, Seaward MRD, Simkin S (2014) Response of epiphytic lichens to 21st Century climate change and tree disease scenarios. Biol Conserv 180:153–164CrossRefGoogle Scholar
  53. Escolar C, Martínez I, Bowker MA, Maestre FT (2012) Warming reduces the growth and diversity of biological soil crust in a semi-arid environment, implications for ecosystem. Philos Trans R Soc B 367:3087–3099CrossRefGoogle Scholar
  54. European Environment Agency (2009) Biogeographical regions in Europe. Website Accessed 25 June 2016
  55. Felicísimo AM, Muñoz J, Mateo RG, Villalba CJ (2012) Vulnerabilidad de la flora y vegetación españolas ante el cambio climático. Ecosistemas 21:1–6. doi: 10.7818/ECOS.2012.21-3.01 Google Scholar
  56. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49CrossRefGoogle Scholar
  57. Fos S, Deltoro VI, Calatayud A, Barreno E (1999) Changes in water economy in relation to anatomical and morphological characteristics during thallus development in Parmelia acetabulum. Lichenologist 31:375–387. doi: 10.1006/lich.1999.0215 Google Scholar
  58. Gauslaa Y, Solhaug KA (1998) The significance of thallus size for the water economy of the cyanobacterial old forest lichen Degelia plumbea. Oecologia 116:76–84PubMedCrossRefGoogle Scholar
  59. Gauslaa Y, Solhaug KA (1999) High-light damage in air-dry thalli of the old forest lichen Lobaria pulmonaria – interaction of irradiance, exposure duration and high temperature. J Exp Bot 50:697–705. doi: 10.1093/jxb/50.334.697 Google Scholar
  60. Giordani P, Incerti G (2008) The influence of climate on the distribution of lichens, a case study in a borderline area (Liguria, Nw Italy). Plant Ecol 2:257–272CrossRefGoogle Scholar
  61. Giordani P, Brunialti G, Alleteo D (2002) Effects of atmospheric pollution on lichen biodiversity (LB) in a Mediterranean region (Liguria, northwest Italy). Environ Pollut 118:53–64PubMedCrossRefGoogle Scholar
  62. Giordani P, Brunialti G, Bacaro G, Nascimbene J (2012) Functional traits of epiphytic lichens as potential indicators of environmental conditions in forest ecosystems. Ecol Indic 18:413–420CrossRefGoogle Scholar
  63. Giordani P, Incerti G, Rizzi G, Nimis PL, Modenesi P (2013) Functional traits of cryptogams in Mediterranean ecosystems are driven by water, light and substrate interactions. J Veg Sci 25:778–792CrossRefGoogle Scholar
  64. Green TGA, Sancho LG, Pintado A (2011) Ecophysiology of dessication/rehidration cycles in mosses and lichens. In: Luettge et al. (eds) Plant desiccation tolerance, Ecological studies 215. Springer, Berlin, pp 89–120Google Scholar
  65. Guisan A, Thuiller W (2005) Predicting species distribution, offering more than simple habitat models. Ecol Lett 8:993–1009CrossRefGoogle Scholar
  66. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186CrossRefGoogle Scholar
  67. Halici MG, Kocakaya M, Sweeney K, Fankhauser JD, Schmitt I (2010) Pertusaria paramerae (Pertusariales, Ascomycota), a species with variable secondary chemistry, and a new lichen record for Turkey. Nova Hedwig 91:223–230CrossRefGoogle Scholar
  68. Hamada H (1983) The effect of temperature on lichen substances in Ramalina subbreviuscula (lichens). Bot Mag Tokyo 96:121–126CrossRefGoogle Scholar
  69. Hastie TJ, Tibshirani R (1990) Generalised additive models. Chapman & Hall, LondonGoogle Scholar
  70. Herk CM, Aptroot A, van Dobben HF (2002) Long-term monitoring in the Netherlands suggests that lichens respond to global warming. Lichenologist 34:141–154CrossRefGoogle Scholar
  71. Hewitt CD (2004) Ensembles-based predictions of climate changes and their impacts. EOS Trans Am Geophys Union 85:566CrossRefGoogle Scholar
  72. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  73. IPCC (2001) Climate change 2001: impacts, adaptation, and vulnerability. In: McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KS (eds) Contribution of working group II to the third assessment report of the intergovernmental panel on climate change. Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, New YorkGoogle Scholar
  74. IPCC (2007) Climate change 2007: The scientific basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contributions of working group I to the fourth assessment report of the intergovernmental panel on climate change: the physical science basis. Cambridge University Press, CambridgeGoogle Scholar
  75. Kharouba HM, McCune JL, Thuiller W, Huntley B (2013) Do ecological differences between taxonomic groups influence the relationship between species’ distributions and climate? A global meta-analysis using species distribution models. Ecography 36:657–664CrossRefGoogle Scholar
  76. Lakatos M, Rascher U, Büdel B (2006) Functional characteristics of corticolous lichens in the understory of a tropical lowland. New Phytol 172:679–695PubMedCrossRefGoogle Scholar
  77. Lange OL, Kilian E, Ziegler H (1986) Water vapor uptake and photosynthesis of lichens, performance differences in species with green and blue–green algae as phycobionts. Oecologia 71:104–110PubMedCrossRefGoogle Scholar
  78. Lavorel S, Garnier F (2002) Predicting changes in community composition and ecosystem functioning from plant traits, revisiting the Holy Grail. Funct Ecol 16:545–556CrossRefGoogle Scholar
  79. Lawrey JD (1991) Biotic interactions in lichen community development: a review. Lichenologist 23:205–214CrossRefGoogle Scholar
  80. Lisewski V, Ellis JC (2010) Epiphyte sensitivity to a cross-scale interaction between habitat quality and macroclimate, an opportunity for range-edge conservation. Biodivers Conserv 19:3935–3949CrossRefGoogle Scholar
  81. Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distribution. Ecography 28:385–393CrossRefGoogle Scholar
  82. Manel S, Dias JM, Ormerod SJ (1999) Comparing discriminant analysis, neural networks and logistic regression for predicting species distributions: a case study with a Himalayan river bird. Ecol Modell 120:337–347CrossRefGoogle Scholar
  83. Martínez I, Burgaz AR, Vitikainen O, Escudero A (2003) Distribution pattern of the genus Peltigera Willd. Lichenologist 35:301–323CrossRefGoogle Scholar
  84. Martínez I, Flores T, Aragón G, Otálora MAG, Rubio-Salcedo M (2014) What factors influence the occurrence of the genus Degelia (a threatened lichen) in central Spain? Fungal Ecol 11:50–59CrossRefGoogle Scholar
  85. Matos P, Pinho P, Aragón G, Martínez I, Nunes A, Soares AMVM, Branquinho C (2015) Lichen traits responding to aridity. J Ecol 103:451–458CrossRefGoogle Scholar
  86. McCullagh P, Nelder JA (1989) Generalized linear models. Chapman & Hall, LondonCrossRefGoogle Scholar
  87. McCune B, Dey J, Peck J, Heiman K, Will-Wolf S (1997) Regional gradients in lichen communities of the southeast United States. Bryologist 100:145–158CrossRefGoogle Scholar
  88. McPherson JM, Jetz W (2007) Effects of species´ ecology on the accuracy of distribution models. Ecography 30:135–151. doi: 10.1111/j.2006.0906-7590.04823.x Google Scholar
  89. Merinero S, Hilmo O, Gauslaa Y (2014) Size is a main driver for hydration traits in cyano- and cephalolichens of boreal rainforest canopies. Fungal Ecol 7:59–66CrossRefGoogle Scholar
  90. Met Office UK (2011) Climate:observations, projections and impacts. Spain. Met Office and the Met Office Logo, United KingdomGoogle Scholar
  91. Milla R, Reich PB (2007) The scaling of leaf area and mass, the cost of light interception increases with leaf size. P R Soc B 274:2109–2114CrossRefGoogle Scholar
  92. Moreno JM (coord.) et al (2005) Principales conclusiones de la evaluación preliminar de los impactos en España por efecto del cambio climático. Oficina Española de Cambio Climático, Ministerio de Medio Ambiente, MadridGoogle Scholar
  93. Morillo C, Gómez-Campo C (2000) Conservation in Spain 1980–2000. Biol Conserv 95:165–174CrossRefGoogle Scholar
  94. Muñiz D, Hladún N (2011) Calicioides. Sociedad Española de Liquenología. SEL, BarcelonaGoogle Scholar
  95. Muñiz D, Llop E, Hladun N (2013) Sphinctrina paramerae, a new Mediterranean lichenicolous species with non-septate spores. Lichenologist 45:137–143CrossRefGoogle Scholar
  96. Muñoz J, Felicísimo AM, Cabezas F, Burgaz AR, Martínez I (2004) Wind as a long-distance dispersal vehicle in the Southern Hemisphere. Science 304:1144–1147PubMedCrossRefGoogle Scholar
  97. Nakicenovic N, Swart R (2000) Special report on emission scenarios. Cambridge University Press, CambridgeGoogle Scholar
  98. Nascimbene J, Marini L (2015) Epiphytic lichen diversity along elevational gradients: biological traits reveal a complex response to water and energy. J Biogeogr 42:1222–1232CrossRefGoogle Scholar
  99. Nash TH III (ed) (2008) Lichen biology, 2nd edn. Cambridge University Press, LondonGoogle Scholar
  100. Nimis PL, Martellos S (2008) ITALIC the information system on Italian lichens version 4.0.
  101. Ninyerola M, Pons X, Roure JM (2005) Atlas Climático Digital de la Península Ibérica. Universidad Autónoma de Barcelona, BarcelonaGoogle Scholar
  102. Osborne PE, Alonso JC, Bryant RG (2001) Modelling landscape-scale habitat use using GIS and remote sensing: a case study with great bustards. J Appl Ecol 38:458–471CrossRefGoogle Scholar
  103. Otálora MAG, Martínez I, Molina CM, Aragón G, Lutzoni F (2008) Phylogenetic relationships and taxonomy of the Leptogium lichenoides group (Collemataceae, Ascomycota) in Europe. Taxon 57:907–921Google Scholar
  104. Otálora MAG, Martínez I, Aragón G, Molina MC, Lutzoni F (2010) Disentangling the Collema-Leptogium complex through a molecular phylogenetic study of the Collemataceae (Peltigerales, lichen-forming Ascomycota). Mycologia 102:279–290PubMedCrossRefGoogle Scholar
  105. Otálora MA, Belinchón R, Prieto M, Aragón G, Izquierdo P, Martínez I (2015) The threatened epiphytic lichen Lobaria pulmonaria in the Iberian Peninsula: genetic diversity and structure across a latitudinal gradient. Fungal Biol 119:802–811PubMedCrossRefGoogle Scholar
  106. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42PubMedCrossRefGoogle Scholar
  107. Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species, are bioclimate envelope models useful? Global Ecol Biogeogr 12:361–371CrossRefGoogle Scholar
  108. Pereira HM, Leadley PW, Proença V et al (2010) Scenarios for global biodiversity in the 21st CENTURY. Science 330:1496PubMedCrossRefGoogle Scholar
  109. Pérez FF, Boscolo R (eds) (2010) Clima en España: pasado, presente y future. Informe de evaluación del cambio climático regional. Red Temática CLIVAR-España. Ministerio de Medio Ambiente y Medio Rural y Marino, MadridGoogle Scholar
  110. Pinho P, Dias T, Cruz C, Sim-Tang Y, Sutton MA, Martins-Louçao MA, Maguas C, Branquinho C (2011) Using lichen functional diversity to assess the effects of atmospheric ammonia in Mediterranean woodlands. J App Ecol 48:1107–1116CrossRefGoogle Scholar
  111. Pisani T, Paoli L, Gaggi C, Pirintsos SA, Loppi S (2007) Effects of high temperature on epiphytic lichens: issues for consideration in a changing climate scenario. Plant Biosyst 141:164–169CrossRefGoogle Scholar
  112. Pöyry J, Luoto M, Heikkinen RK, Saarinen K (2008) Species traits are associated with the quality of bioclimatic models. Global Ecol Biogeogr 17:403–414CrossRefGoogle Scholar
  113. Prieto M, Aragón G, Martínez I (2010) The genus Catapyrenium s. lat. (Verrucariaceae) in the Iberian Peninsula and the Balearic Islands. Lichenologist 42:637–684CrossRefGoogle Scholar
  114. Prieto M, Martínez I, Aragón G, Gueidan C, Lutzoni F (2012) Molecular phylogeny of Heteroplacidium, Placidium and related catapyrenoid genera (Verrucariaceae, lichen-forming Ascomycota). Am J Bot 99:23–35PubMedCrossRefGoogle Scholar
  115. Rai H, Khare R, Baniya CB, Upreti DK, Gupta RK (2015) Elevational gradients of terricolous lichen species richness in the Western Himalaya. Biodivers Conserv 24:1155–1174CrossRefGoogle Scholar
  116. Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60PubMedCrossRefGoogle Scholar
  117. Roux C, Bricaud O, Menard T, Gueidan C, Coste C, Navarro-Rosinés P (2003a) Champignons lichénisés et lichénicoles de la France méridionale (Corse comprise): espèces nouvelles et intéressantes. Bull Soc Linn Provence 54:125–141Google Scholar
  118. Roux C, Signoret J, Masson D (2003b) Proposition d’une liste d’espèces de macrolichens à protéger en France. Association Française de Lichénologie, 33 ppGoogle Scholar
  119. Rubio-Salcedo M, Martínez I, Carreño F, Escudero A (2013) Poor effectiveness of the Natura 2000 network protecting Mediterranean lichen species. J Nat Conserv 21:1–9CrossRefGoogle Scholar
  120. Seoane J, Carrascal LM (2008) Interspecific differences in population trends of Spanish birds are related to habitat and climatic preferences. Glob Ecol Biogeogr 17:111–121Google Scholar
  121. Shiver R, Cutler K, Doak DF (2011) Comparative demography of an epiphytic lichen, support for general life history patterns and solutions to common problems in demographic parameter estimation. Oecologia 170:137–146CrossRefGoogle Scholar
  122. Sillett SC, McCune B, Peck JE, Rambo TR, Ruchty A (2000) Dispersal limitations of epiphytic lichens result in species dependent on old-growth forests. Ecol Appl 10:789–799CrossRefGoogle Scholar
  123. Søchting U (2004) Flavoparmelia caperata, a probable indicator of increased temperatures in Denmark. Graph Scr 15:53–56Google Scholar
  124. Summers DM, Bryan BA, Crossman ND, Meyer WS (2012) Species vulnerability to climate change, impacts on spatial conservation priorities and species representation. Glob Change Biol 18:1365–2486CrossRefGoogle Scholar
  125. Swets J (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293PubMedCrossRefGoogle Scholar
  126. Thuiller W (2003) BIOMOD – optimizing predictions of species distributions and projecting potential future shifts under global change. Glob Change Biol 9:1353–1362CrossRefGoogle Scholar
  127. Thuiller W, Lavorel S, Sykes MT, Araújo MB (2006) Using niche-based modelling to assess the impact of climate change on tree functional diversity in Europe. Divers Distrib 12:49–60CrossRefGoogle Scholar
  128. Thuiller W, Lavergne S, Roquet C, Boulangeat I, Lafourcade B, Araújo MB (2011) Consequences of climate change on the tree of life in Europe. Nature 470:531–534PubMedCrossRefGoogle Scholar
  129. Venables WN, Ripley BD (2002) Modern applied statistics with s, 4th edn. Springer, New YorkCrossRefGoogle Scholar
  130. Vitikainen O (1994) Taxonomic revision of Peltigera (lichenized Ascomycotina) in Europe. Acta Bot Fenn 152:1–96Google Scholar
  131. Weisberg S (1980) Applied Linear Regression. John Wiley and Sons, New YorkGoogle Scholar
  132. Wilson RJ, Gutiérrez D, Gutiérrez J, Martínez D, Agudo R, Monserrat VJ (2005) Changes to the elevational limits and extent of species ranges associated with climate change. Ecol Lett 8:1138–1146PubMedCrossRefGoogle Scholar
  133. Zimmermann NE, Edwards TC, Graham CG, Pearman PB, Svenning JC (2010) New trends in species distribution modelling. Ecography 33:1–5CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Marta Rubio-Salcedo
    • 1
  • Achilleas Psomas
    • 2
  • María Prieto
    • 1
  • Niklaus E. Zimmermann
    • 2
  • Isabel Martínez
    • 1
  1. 1.Área de Biodiversidad y Conservación, ESCETUniversidad Rey Juan CarlosMóstoles, MadridSpain
  2. 2.Swiss Federal Research Institute WSLBirmensdorfSwitzerland

Personalised recommendations