Advertisement

Biodiversity and Conservation

, Volume 26, Issue 4, pp 825–842 | Cite as

Genetic diversity of Enterolobium cyclocarpum in Colombian seasonally dry tropical forest: implications for conservation and restoration

  • E. Thomas
  • C. Gil Tobón
  • J. P. Gutiérrez
  • C. Alcázar Caicedo
  • L. G. Moscoso Higuita
  • L. A. Becerra
  • J. Loo
  • M. A. González
Original Paper
Part of the following topical collections:
  1. Forest and plantation biodiversity

Abstract

Enterolobium cyclocarpum is a characteristic legume tree species of seasonally dry tropical forests (SDTFs) of Mesoamerica and northern South America typically used in silvopastoral and agroforestry systems. Remaining populations of E. cyclocarpum in Colombia are severely fragmented owing to the highly degraded state of SDTF in the country, posing threats to both their in situ persistence and their usefulness as seed sources for future planting efforts. We genotyped E. cyclocarpum populations at nine sampling sites across a latitudinal gradient of SDTF in Colombia by means of eight nSSR markers to elucidate the species diversity distribution in the country. Our data suggest that a deep divide seems to have existed between Caribbean and Andean populations of E. cyclocarpum in Colombian SDTF that may date back to the last glacial maximum (~21,000 BP), or longer. However, we only found evidence of genetic differentiation between trees from the southern Cauca River valley and populations at more northern locations. All the latter populations showed signs of admixture which may be the result of human-influenced movement of germplasm, particularly after the introduction of cattle by European settlers. Most of the sampled sites showed heterozygosity scores close to Hardy–Weinberg expectations. Only the three southern-most populations displayed significantly positive values of inbreeding coefficient, potentially affecting their in situ maintenance and their use as seed sources. Based on our findings we identify priority areas for the in situ conservation of remaining E. cyclocarpum populations, and propose a strategy for sourcing of appropriate planting material for use in future tree planting efforts.

Keywords

Paleodistribution Agroforestry Suitability modelling Enterolobium cyclocarpum Conservation Fragmentation Seed zones 

Notes

Acknowledgements

The authors wish to thank the Colombian companies Ecopetrol and Empresas Publicas de Medellin, the Government of the Colombian department of Antioquia, the CGIAR Fund Donors (http://www.cgiar.org/who-we-are/cgiar-fund/fund-donors-2) and the CGIAR research program on Forest Trees and Agroforestry for financial support. We are grateful to Jérôme Duminil and three anonymous reviewers for helpful comments on a previous version of this paper.

Supplementary material

10531_2016_1274_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 17 kb)
10531_2016_1274_MOESM2_ESM.docx (190 kb)
Supplementary material 2 (DOCX 189 kb)

References

  1. Aguilar R, Ashworth L, Galetto L, Aizen MA (2006) Plant reproductive susceptibility to habitat fragmentation: review and synthesis through a meta-analysis. Ecol Lett 9:968–980CrossRefPubMedGoogle Scholar
  2. Aguilar R, Quesada M, Ashworth L et al (2008) Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Mol Ecol 17:5177–5188CrossRefPubMedGoogle Scholar
  3. Alvarado-Solano DP, Ospina JTO (2015) Distribución Espacial Del Bosque Seco Tropical En El Valle Del Cauca, Colombia. Acta Biológica Colomb 20:141–153CrossRefGoogle Scholar
  4. Alzate-Marin AL, Guidugli MC, Soriani HH et al (2009) An efficient and rapid DNA minipreparation procedure suitable for PCR/SSR and RAPD analyses in tropical forest tree species. Braz Arch Biol Technol 52:1217–1224CrossRefGoogle Scholar
  5. Banda-R K, Delgado-Salinas A, Dexter KG et al (2016) Plant diversity patterns in neotropical dry forests and their conservation implications. Science 353:1383–1387CrossRefPubMedGoogle Scholar
  6. Basey AC, Fant JB, Kramer AT (2015) Producing native plant materials for restoration: 10 rules to collect and maintain genetic diversity. Nativ Plants J 16:37–53CrossRefGoogle Scholar
  7. Braconnot P, Otto-bliesner B, Harrison S et al (2007) Results of PMIP2 coupled simulations of the Mid-Holocene and Last glacial maximum—Part 1: experiments and large-scale features. Clim Past 3:261–277CrossRefGoogle Scholar
  8. Breed MF, Stead MG, Ottewell KM et al (2013) Which provenance and where? Seed sourcing strategies for revegetation in a changing environment. Conserv Genet 14:1–10CrossRefGoogle Scholar
  9. Colpaert N, Cavers S, Bandou E et al (2005) Sampling tissue for DNA analysis of trees: trunk cambium as an alternative to canopy leaves. Silvae Genet 54:265–269Google Scholar
  10. de Abreu Moreira P, Brandão MM, de Araujo NH et al (2015) Genetic diversity and structure of the tree Enterolobium contortisiliquum (Fabaceae) associated with remnants of a seasonally dry tropical forest. Flora Morphol Distrib Funct Ecol Plants 210:40–46Google Scholar
  11. Dent EA, VonHoldt BM (2011) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361Google Scholar
  12. Deutsches klimarechenzentrum (DKRZ) (1992) The ECHAM3 atmospheric general circulation model. Technical Report 6. HamburgGoogle Scholar
  13. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  14. Duminil J, Mona S, Mardulyn P et al (2015) Late Pleistocene molecular dating of past population fragmentation and demographic changes in African rain forest tree species supports the forest refuge hypothesis. J Biogeogr 42:1443–1454CrossRefGoogle Scholar
  15. Ekamawanti HA, Setiadi Y, Sopandie D, Santosa DA (2013) The Role of arbuscular mycorrhizal fungus (Gigaspora margarita) on mercury and nutrients accumulation by Enterolobium cyclocarpum Seedlings. Microbiol Indones 7:167–176CrossRefGoogle Scholar
  16. Escalante EE (1985) Promising agroforestry systems in Venezuela. Agrofor Syst 3:209–221CrossRefGoogle Scholar
  17. Etter A (2015) La transformaciones del uso de la tierra y los ecosistemas durante el período colonial en Colombia. In: Meisel Roca A, Ramírez GMT (eds) La economía colonial de la Nueva Granada, primera edn. FCE, Banco de la República, Bogotá, pp 62–103Google Scholar
  18. Etter A, van Wyngaarden W (2000) Patterns of landscape transformation in colombia, with emphasis in the andean region. AMBIO A J Hum Environ 29:432–439CrossRefGoogle Scholar
  19. Etter A, McAlpine C, Possingham H (2008) Historical patterns and drivers of landscape change in colombia since 1500: a regionalized spatial approach. Ann Assoc Am Geogr 98:2–23CrossRefGoogle Scholar
  20. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  21. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedPubMedCentralGoogle Scholar
  22. Frankel OH, Brown AHD, Burdon J (1995) The genetic diversity of wild plants. The conservation of plant biodiversity, First edit. University Press, Cambridge, pp 10–38Google Scholar
  23. Galluzzi G, Dufour D, Thomas E et al (2015) An integrated hypothesis on the domestication of bactris gasipaes. PLoS ONE 10:e0144644CrossRefPubMedPubMedCentralGoogle Scholar
  24. García H, Corzo G, Isaacs P, Etter A (2014) Distribución y estado actual de los remanentes del bioma: de bosque seco tropical en Colombia: insumos para su gestión. In: Pizano C, García H (eds) El Bosque seco tropical en Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, pp 229–251Google Scholar
  25. Gonzales E, Hamrick JL, Smouse PE et al (2010) The impact of landscape disturbance on spatial genetic structure in the Guanacaste tree, Enterolobium cyclocarpum (Fabaceae). J Hered 101:133–143CrossRefPubMedGoogle Scholar
  26. Hengl T, de Jesus JM, MacMillan R et al (2014) SoilGrids1 km—global soil information based on automated mapping. PLoS ONE 9:e105992CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hijmans RJ (2012) Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model. Ecology 93:679–688CrossRefPubMedGoogle Scholar
  28. Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  29. Janzen DH (1981) Enterolobium cyclocarpum seed passage rate and survival in horses, costa rican pleistocene seed dispersal agents. Ecology 62:593–601CrossRefGoogle Scholar
  30. Janzen DH (1982) Variation in average seed size and fruit seediness in a fruit crop of a guanacaste tree (Leguminosae: Enterolobium cyclocarpum) (Costa Rica). Am J Bot 69:1169–1178CrossRefGoogle Scholar
  31. Janzen DH (1983) Costa rican natural history. University of Chicago Press, ChicagoGoogle Scholar
  32. Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405CrossRefPubMedGoogle Scholar
  33. Jombart T, Devillard S, Dufour A, Pontier D (2008) Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity 101:92–103CrossRefPubMedGoogle Scholar
  34. Kamvar ZN, Tabima JF, Grünwald NJ (2014) Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2:e281CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kindt R, Coe R (2005) Tree diversity analysis. A manual and software for common statistical methods for ecological biodiversity studies. World Agroforestry Centre (ICRAF), NairobiGoogle Scholar
  36. Laborde JL, Corrales-Ferrayola I (2012) Direct seeding of Brosimum alicastrum SW. (Moraceae) and Enterolobium cyclocarpum Griseb. (Mimosaceae) in different habitats in the dry tropics of central Veracruz. Acta Bot Mex 100:107–134CrossRefGoogle Scholar
  37. Lagemann J, Heuveldop J (1983) Characterization and evaluation of agroforestry systems: the case of Acosta-Puriscal, Costa Rica. Agrofor Syst 1:101–115CrossRefGoogle Scholar
  38. Lowe AJ, Boshier D, Ward M et al (2005) Genetic resource impacts of habitat loss and degradation; reconciling empirical evidence and predicted theory for neotropical trees. Heredity 95:255–273CrossRefPubMedGoogle Scholar
  39. Mahecha L (2002) El silvopastoreo: una alternativa de producción que disminuye el impacto ambiental de la ganadería bovina. Rev Colomb Ciencias Pecu 15:226–231Google Scholar
  40. Marchant R, Behling H, Berrio JC et al (2001) Mid- to Late-Holocene pollen-based biome reconstructions for Colombia. Quat Sci Rev 20:1289–1308CrossRefGoogle Scholar
  41. Marchant R, Behling H, Berrio JC et al (2002) Pollen-based biome reconstructions for Colombia at 3000, 6000, 9000, 12000, 15000, and 18000 14C yr ago: late quaternary tropical vegetation dynamics. J Quat Sci 17:113–129CrossRefGoogle Scholar
  42. Miles L, Newton AC, DeFries RS et al (2006) A global overview of the conservation status of tropical dry forests. J Biogeogr 33:491–505CrossRefGoogle Scholar
  43. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci 70:3321–3323CrossRefPubMedPubMedCentralGoogle Scholar
  44. Novaes RM, Rodrigues JG, Lovato MB (2009) An efficient protocol for tissue sampling and DNA isolation from the stem bark of Leguminosae trees. Genet Mol Res 8:86–96CrossRefPubMedGoogle Scholar
  45. Obando MF, Moya R (2013) Silviculture conditions and wood properties of Samanea saman and Enterolobium cyclocarpum in 19-year-old mixed plantations. For Syst 22:58–70Google Scholar
  46. Pennington RT, Prado DE, Pendry C (2000) Neotropical seasonally dry forests and Quaternary vegetation changes. J Biogeogr 27:261–273CrossRefGoogle Scholar
  47. Peters MB, Hagen C, Dorset W et al (2008) Isolation and characterization of microsatellite loci in the Guanacaste tree, Enterolobium cyclocarpum. Mol Ecol Resour 8:129–131CrossRefPubMedGoogle Scholar
  48. Petit RJ, Aguinagalde I, Beaulieu JL et al (2003) Glacial refugia hotspots but not melting pots of genetic diversity. Science 80(300):1563–1565CrossRefGoogle Scholar
  49. Pizano C, González-M R, Gonzáles MF et al (2014) Las plantas de los bosques secos de Colombia. In: Pizano C, García H (eds) El Bosque seco tropical en Colombia. Instituto de Investigación de recursos Biológicos Alexander von Humboldt, Bogota, pp 49–93Google Scholar
  50. Prado D, Gibbs P (1993) Patterns of species distributions in the dry seasonal forests of South America. Ann Missouri Bot Gard 80:902–927CrossRefGoogle Scholar
  51. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  52. Ramírez Villegas J, Jarvis A (2010) Downscaling global circulation model outputs: the delta method. International Center for Tropical Agriculture (CIAT), CaliGoogle Scholar
  53. Reinoso-Pérez M (2014) Agroforestry: a viable alternative for sustainable agricultural production. Sci Agric 1:32–39Google Scholar
  54. Rocas NA (2002) Enterolobium cyclocarpum. In: Vozzo JA (ed) Tropical tree seed manual. United States Department of Agriculture Forest Service, USA, pp 449–451Google Scholar
  55. Rocha O, Aguilar G (2001) Variation in the breeding behavior of the dry forest tree Enterolobium cyclocarpum (Guanacaste) in Costa Rica. Am J Bot 88:1600–1606CrossRefPubMedGoogle Scholar
  56. Rocha OJ, Lobo JA (1996) Genetic variation and differentiation among five populations of the Guanacaste tree (Enterolobium cyclocarpum Jacq.) in Costa Rica. Int J Plant Sci 157:234–239CrossRefGoogle Scholar
  57. Rodríguez-Sahagún A, Castellanos-Hernandez OA, Acevedo-Hernandez GJ, Excised A (2007) In vitro propagation of Enterolobium cyclocarpum (guanacaste) from nodal explants of axenic seedlings. E-Gnosis 5:1–14Google Scholar
  58. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234CrossRefPubMedGoogle Scholar
  59. Sgro CM, Lowe AJ, Hoffmann AA (2011) Building evolutionary resilience for conserving biodiversity under climate change. Evol Appl 4:326–337CrossRefPubMedGoogle Scholar
  60. Thomas E, van Zonneveld M, Loo J et al (2012) Present Spatial Diversity Patterns of Theobroma cacao L. in the Neotropics Reflect Genetic Differentiation in Pleistocene Refugia Followed by Human-Influenced Dispersal. PLoS ONE 7:e47676CrossRefPubMedPubMedCentralGoogle Scholar
  61. Thomas E, Jalonen R, Loo J et al (2014) Genetic considerations in ecosystem restoration using native tree species. For Ecol Manag 333:66–75CrossRefGoogle Scholar
  62. Thomas E, Jalonen R, Loo J, Bozzano M (2015a) Avoiding failure in forest restoration: the importance of genetically diverse and site-matched germplasm. Unasylva 66:29–36Google Scholar
  63. Thomas E, Alcázar Caicedo C, McMichael CH et al (2015b) Uncovering spatial patterns in the natural and human history of Brazil nut (Bertholletia excelsa) across the Amazon Basin. J Biogeogr 42:1367–1382CrossRefGoogle Scholar
  64. Thomas E, Alcazar C, Moscoso LG et al (2017) The importance of species selection and seed sourcing in forest restoration for enhancing adaptive potential to climate change: Colombian tropical dry forest as a model. In: CBD Technical Series: Biodiversity and Climate Change. CBD secretariat, MontréalGoogle Scholar
  65. Vina A, Cavelier J (1999) Deforestation Rates (1938–1988) of tropical lowland forests on the andean foothills of Colombia. Biotropica 31:31–36Google Scholar
  66. Werneck FP, Costa GC, Colli GR et al (2011) Revisiting the historical distribution of seasonally dry tropical forests: new insights based on palaeodistribution modelling and palynological evidence. Glob Ecol Biogeogr 20:272–288CrossRefGoogle Scholar
  67. Werneck FP, Nogueira C, Colli GR et al (2012) Climatic stability in the Brazilian Cerrado: implications for biogeographical connections of South American savannas, species richness and conservation in a biodiversity hotspot. J Biogeogr 39:1695–1706CrossRefGoogle Scholar
  68. Young AG, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Bioversity InternationalLimaPeru
  2. 2.Universidad de AntioquiaMedellínColombia
  3. 3.International Center for Tropical AgricultureCaliColombia
  4. 4.Bioversity InternationalCaliColombia
  5. 5.Forestpa SASMedellínColombia
  6. 6.Bioversity InternationalRomeItaly
  7. 7.Instituto de Investigación de Recursos Biológicos Alexander von HumboldtBogotáColombia

Personalised recommendations