Biodiversity and Conservation

, Volume 26, Issue 3, pp 669–686 | Cite as

Insights into regional patterns of Amazonian forest structure, diversity, and dominance from three large terra-firme forest dynamics plots

  • Alvaro DuqueEmail author
  • Helene C. Muller-Landau
  • Renato Valencia
  • Dairon Cardenas
  • Stuart Davies
  • Alexandre de Oliveira
  • Álvaro J. Pérez
  • Hugo Romero-Saltos
  • Alberto Vicentini
Original Paper
Part of the following topical collections:
  1. Forest and plantation biodiversity


We analyze forest structure, diversity, and dominance in three large-scale Amazonian forest dynamics plots located in Northwestern (Yasuni and Amacayacu) and central (Manaus) Amazonia, to evaluate their consistency with prevailing wisdom regarding geographic variation and the shape of species abundance distributions, and to assess the robustness of among-site patterns to plot area, minimum tree size, and treatment of morphospecies. We utilized data for 441,088 trees (DBH ≥1 cm) in three 25-ha forest dynamics plots. Manaus had significantly higher biomass and mean wood density than Yasuni and Amacayacu. At the 1-ha scale, species richness averaged 649 for trees ≥1 cm DBH, and was lower in Amacayacu than in Manaus or Yasuni; however, at the 25-ha scale the rankings shifted, with Yasuni < Amacayacu < Manaus. Within each site, Fisher’s alpha initially increased with plot area to 1–10 ha, and then showed divergent patterns at larger areas depending on the site and minimum size. Abundance distributions were better fit by lognormal than by logseries distributions. Results were robust to the treatment of morphospecies. Overall, regional patterns in Amazonian tree species diversity vary with the spatial scale of analysis and the minimum tree size. The minimum area to capture local diversity is 2 ha for trees ≥1 cm DBH, or 10 ha for trees ≥10 cm DBH. The underlying species abundance distribution for Amazonian tree communities is lognormal, consistent with the idea that the rarest species have not yet been sampled. Enhanced sampling intensity is needed to fill the still large voids we have in plant diversity in Amazon forests.


Aboveground biomass Abundance Forest conservation Fisher’s alpha Rarity Species richness 



We gratefully acknowledge the contributions of the many people who assisted in collecting the tree census data. In Colombia, this work was made possible by the Parques Nacionales de Colombia, and in particular to Eliana Martínez and staff members of the Amacayacu Natural National Park. The census of Yasuni plot was financed by Pontifical Catholic University of Ecuador (PUCE, research grants of Donaciones del Impuesto a la Renta from the government of Ecuador). The Yasuni plot census was endorsed by the Ministerio de Ambiente del Ecuador through several research permits. We also thank the Center for Tropical Forest Science-Forest Global Earth Observatory (CTFS-ForestGEO) of the Smithsonian Tropical Research Institute for partial support of plot census work. This manuscript was advanced at a working group meeting funded by a grant from the US National Science Foundation (DEB-1046113). Comments from Hans ter Steege and an anonymous reviewer helped to improve the contents of this manuscript.

Supplementary material

10531_2016_1265_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1278 kb)


  1. Baker T, Phillips O, Malhi Y et al (2004) Variation in wood density determines spatial patterns in Amazonian forest biomass. Glob Chang Biol 10:545–562. doi: 10.1111/j.1529-8817.2003.00751.x CrossRefGoogle Scholar
  2. Chave J, Andalo C, Brown S et al (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99. doi: 10.1007/s00442-005-0100-x CrossRefPubMedGoogle Scholar
  3. Chave J, Muller-Landau HC, Baker TR et al (2006) Regional and phylogenetic variation of wood density across 2456 Neotropical tree species. Ecol Appl 16:2356–2367.
  4. Chave J, Réjou-Méchain M, Búrquez A et al (2014) Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Chang Biol 20:3177–3190. doi: 10.1111/gcb.12629 CrossRefPubMedGoogle Scholar
  5. Condit R, Hubbell SP, Lafrankie JV et al (1996) Species-area and species–individual relationships for tropical trees: a comparison of three 50-ha plots. J Ecol 84:549–562. doi: 10.2307/2261477 CrossRefGoogle Scholar
  6. Condit R, Foster RB, Hubbell SP et al (1998) Assessing forest diversity on small plots: calibration using species–individual curves from 50 ha plots. In: Dallmeier F, Comiskey JA (eds) Forest biodiversity research, monitoring and modeling. UNESCO/Parthenon Publishing Group, Paris/New York, pp 247–268Google Scholar
  7. Connolly SR (2005) Community structure of corals and reef fishes at multiple scales. Science 309:1363–1365. doi: 10.1126/science.1113281 CrossRefPubMedGoogle Scholar
  8. Connolly SR, MacNeil MA, Caley MJ et al (2014) Commonness and rarity in the marine biosphere. Proc Natl Acad Sci USA 111:8524–8529. doi: 10.1073/pnas.1406664111 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Duivenvoorden JF, Duque A, Cavelier J et al (2005) Density and diversity of plants in relation to soil nutrient reserves in well-drained upland forests in the north-western Amazon basin. K Danske Vidensk Selsk Biol Skr 55:25–35Google Scholar
  10. Feeley K (2015) Are we filling the data void? An assessment of the amount and extent of plant collection records and census data available for Tropical South America. PLoS ONE 10:e0125629. doi: 10.1371/journal.pone.0125629 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Fisher RA, Steven Corbet A, Williams CB (1943) The relation between the number of species and the number of individuals in a random. J Anim Ecol 12:42–58CrossRefGoogle Scholar
  12. Gentry AH (1988a) Tree species richness of upper Amazonian forests. Proc Natl Acad Sci USA 85:156–159. doi: 10.1073/pnas.85.1.156 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gentry AH (1988b) Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann Missouri Bot Gard 75:1–34CrossRefGoogle Scholar
  14. Gomes ACS, Andrade A, Barreto-Silva JS et al (2013) Local plant species delimitation in a highly diverse Amazonian forest: do we all see the same species? J Veg Sci 24:70–79. doi: 10.1111/j.1654-1103.2012.01441.x CrossRefGoogle Scholar
  15. Hoorn C, Wesselingh FP, Steege H et al (2010) Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330:927–931. doi: 10.1126/science.1194585 CrossRefPubMedGoogle Scholar
  16. Hubbell SP (2001) The unified neutral theory of biodiversity and biographyGoogle Scholar
  17. Hubbell SP (2013) Tropical rain forest conservation and the twin challenges of diversity and rarity. Ecol Evol 3:3263–3274. doi: 10.1002/ece3.705 PubMedPubMedCentralGoogle Scholar
  18. Hubbell SP, He F, Condit R et al (2008) Colloquium paper: how many tree species are there in the Amazon and how many of them will go extinct? Proc Natl Acad Sci USA 105(Suppl):11498–11504. doi: 10.1073/pnas.0801915105 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Lips J, Duivenvoorden JF (2001) Caracterización ambiental. In: Duivenvoorden JF, Balslev H, Cavelier J et al (eds) Evaluación de recursos naturales no maderables en la Amzonía noroccidental. Universiteit van Amsterdam, Amsterdam, pp 19–46Google Scholar
  20. Magurran AE, Henderson PA (2003) Explaining the excess of rare species in natural species abundance distributions. Nature 422:714–716CrossRefPubMedGoogle Scholar
  21. Malhi Y, Wood D, Baker TR et al (2006) The regional variation of aboveground live biomass in old-growth Amazonian forests. Glob Chang Biol 12:1107–1138. doi: 10.1111/j.1365-2486.2006.01120.x CrossRefGoogle Scholar
  22. McGill B (2003) A test of the unified neutral theory of biodiversity. Nature 422:881–885. doi: 10.1038/nature01569.1 CrossRefPubMedGoogle Scholar
  23. Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefPubMedGoogle Scholar
  24. Oksanen J, Blanchet F, Kindt R, et al (2013) vegan: Community Ecology Package. R package version 2.0-10. R package version 1. doi: 10.4135/9781412971874.n145
  25. Phillips O, Hall P, Gentry A et al (1994) Dynamics and species richness of tropical rain forests. Proc Natl Acad Sci USA 91:2805–2809CrossRefPubMedPubMedCentralGoogle Scholar
  26. Phillips OL, Malhi Y, Higuchi N et al (1998) Changes in the carbon balance of tropical forests: evidence from long-term plots. Science 282:439–442. doi: 10.1126/science.282.5388.439 CrossRefPubMedGoogle Scholar
  27. Phillips OL, Baker TR, Arroyo L et al (2004) Pattern and process in Amazon tree turnover, 1976–2001. Philos Trans R Soc B Biol Sci 359:381–407. doi: 10.1098/rstb.2003.1438 CrossRefGoogle Scholar
  28. Pitman NCA, Terborgh J, Silman MR, Nuez P (1999) Tree species distributions in an upper Amazonian forest. Ecology 80:2651–2661CrossRefGoogle Scholar
  29. Pitman NCA, Terborgh JW, Silman MR et al (2001) Dominace and distribution of tree species in upper Amazonian terra firme forests. Ecology 82:2101–2117CrossRefGoogle Scholar
  30. Pos E, Guevara Andino JE, Sabatier D et al (2014) Are all species necessary to reveal ecologically important patterns? Ecol Evol 4:4626–4636. doi: 10.1002/ece3.1246 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Prado PI, Miranda MD (2013) Fitting species abundance model with maximum likelihood Quick reference for sads package. 1–20Google Scholar
  32. Preston FW (1948) The commonness, and rarity, of species. Ecology 29:254–283. doi: 10.2307/1930989 CrossRefGoogle Scholar
  33. R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0Google Scholar
  34. Saatchi SS, Houghton RA, Dos Santos Alvalá RC et al (2007) Distribution of aboveground live biomass in the Amazon basin. Glob Chang Biol 13:816–837. doi: 10.1111/j.1365-2486.2007.01323.x CrossRefGoogle Scholar
  35. Slik JWF, Arroyo-Rodríguez V, Aiba S-I et al (2015) An estimate of the number of tropical tree species. Proc Natl Acad Sci USA 112:7472–7477. doi: 10.1073/pnas.1423147112 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Sombroek WG (2000) Amazon landforms and soils in relation to biological diversity. Acta Amaz 30:81–100CrossRefGoogle Scholar
  37. Sombroek W (2001) Spatial and temporal patterns of Amazon rainfall. Consequences for the planning of agricultural occupation and protection of primary forests. Ambio 30:388–396Google Scholar
  38. ter Steege H, Pitman N, Sabatier D et al (2003) A spatial model of tree a—diversity and tree density for the Amazon. Biodivers Conserv 12:2255–2277CrossRefGoogle Scholar
  39. ter Steege H, Pitman NCA, Phillips OL et al (2006) Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443:444–447. doi: 10.1038/nature05134 CrossRefPubMedGoogle Scholar
  40. ter Steege H, Pitman NCA, Sabatier D et al (2013) Hyperdominance in the Amazonian tree flora. Science 342:1243092. doi: 10.1126/science.1243092 CrossRefPubMedGoogle Scholar
  41. ter Steege H, Pitman NCA, Killeen TJ et al (2015) Estimating the global conservation status of more than 15,000 Amazonian tree species. Science 1:e1500936. doi: 10.1126/sciadv.1500936 Google Scholar
  42. Valencia R, Foster RB, Villa G et al (2004) Tree species distributions and local habitat variation in the Amazon: large forest plot in eastern Ecuador. J Ecol 92:214–229Google Scholar
  43. Wilson JB (1991) Methods for fitting dominance/diversity curves. J Veg Sci 2:35–46. doi: 10.2307/3235896 CrossRefGoogle Scholar
  44. Zanne AE, López-González G, Coomes DA et al (2009) Global wood density database. Dryad Digit, ReposGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Alvaro Duque
    • 1
    Email author
  • Helene C. Muller-Landau
    • 2
  • Renato Valencia
    • 3
  • Dairon Cardenas
    • 4
  • Stuart Davies
    • 2
  • Alexandre de Oliveira
    • 5
  • Álvaro J. Pérez
    • 3
  • Hugo Romero-Saltos
    • 3
    • 6
  • Alberto Vicentini
    • 7
  1. 1.Departamento de Ciencias ForestalesUniversidad Nacional de Colombia – Sede MedellínMedellínColombia
  2. 2.Center for Tropical Forest Science-Forest Global Earth ObservatorySmithsonian Tropical Research InstituteWashingtonUSA
  3. 3.Laboratorio de Ecología de Plantas, Escuela de Ciencias BiológicasPontificia Universidad Católica del EcuadorQuitoEcuador
  4. 4.Herbario Amazónico ColombianoInstituto Amazónico de Investigaciones Científicas SinchiBogotáColombia
  5. 5.Instituto de BiociênciasUniversidade de São PauloSão PauloBrazil
  6. 6.Universidad Yachay TechUrcuquíEcuador
  7. 7.Instituto Nacional de Pesquisas da AmazôniaManausBrazil

Personalised recommendations