Biodiversity and Conservation

, Volume 26, Issue 3, pp 617–629 | Cite as

Negative relationships between species richness and evenness render common diversity indices inadequate for assessing long-term trends in butterfly diversity

  • Zachary G. MacDonaldEmail author
  • Scott E. Nielsen
  • John H. Acorn
Original Paper


Species richness and evenness, the two principle components of species diversity, are frequently used to describe variation in species assemblages in space and time. Compound indices, including variations of both the Shannon–Wiener index and Simpson’s index, are assumed to intelligibly integrate species richness and evenness into all-encompassing measures. However, the efficacy of compound indices is disputed by the possibility of inverse relationships between species richness and evenness. Past studies have assessed relationships between various diversity measures across survey locations for a variety of taxa, often finding species richness and evenness to be inversely related. Butterflies are one of the most intensively monitored taxa worldwide, but have been largely neglected in such studies. Long-term butterfly monitoring programs provide a unique opportunity for analyzing how trends in species diversity relate to habitat and environmental conditions. However, analyzing trends in butterfly diversity first requires an assessment of the applicability of common diversity measures to butterfly assemblages. To accomplish this, we quantified relationships between butterfly diversity measures estimated from 10 years of butterfly population data collected in the North Saskatchewan River Valley in Edmonton, Alberta, Canada. Species richness and evenness were inversely related within the butterfly assemblage. We conclude that species evenness may be used in conjunction with richness to deepen our understandings of assemblage organization, but combining these two components within compound indices does not produce measures that consistently align with our intuitive sense of species diversity.


Butterfly monitoring Species diversity Abundance data Effective number of species Shannon–Wiener index Simpson’s index 



For assistance with butterfly surveys over the years, we thank Benny Acorn, Jesse Acorn, Vanessa Block, Karen Brown, Tory Culen, Chris Fisher, Caroline LeCourtois, Christianne McDonald, Sonya Odsen, Felix Sperling, Dena Stockburger, Gagan Gill, Laura Vehring, Sarah Booth, Jennine Pedersen, and Ulrike Shlägel. All butterfly surveys were coordinated and overseen by the third author, John H. Acorn. We also extend thanks to Sonya Odsen and Federico Riva for their insights and assistance with analyses, and to Uldis Silins for his assistance in acquiring historical weather data. Finally, we acknowledge and thank both Janet Sperling and Felix Sperling for their invaluable insights and reviews of the manuscript.


  1. Andelman SJ, Willig MR (2003) Present patterns and future prospects for biodiversity in the Western Hemisphere. Ecol Lett 6(9):818–824. doi: 10.1046/j.1461-0248.2003.00503.x CrossRefGoogle Scholar
  2. Bock CE, Jones ZF, Bock JH (2007) Relationships between species richness, evenness, and abundance in a southwestern savanna. Ecology 88(5):1322–1327. doi: 10.1890/06-0654 CrossRefPubMedGoogle Scholar
  3. Buzas MA, Hayek LC (1996) Biodiversity resolution: an integrated approach. Biodivers Lett 4:40–43. doi: 10.2307/2999767 CrossRefGoogle Scholar
  4. Camargo JA (1992) Can dominance influence stability in competitive interactions. Oikos 64:605–609. doi: 10.2307/3545183 CrossRefGoogle Scholar
  5. Caswell H (1976) Community structure: a neutral model analysis. Ecol Monogr 46(3):327–354. doi: 10.2307/1942257 CrossRefGoogle Scholar
  6. Chao A, Gotelli NJ, Hsieh T et al (2014) Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr 84(1):45–67. doi: 10.1890/13-0133.1 CrossRefGoogle Scholar
  7. Fleishman E, Murphy DD (2009) A realistic assessment of the indicator potential of butterflies and other charismatic taxonomic groups. Conserv Biol 23(5):1109–1116. doi: 10.1111/j.1523-1739.2009.01246.x CrossRefPubMedGoogle Scholar
  8. Gosselin F (2006) An assessment of the dependence of evenness indices on species richness. J Theor Biol 242(3):591–597. doi: 10.1016/j.jtbi.2006.04.017 CrossRefPubMedGoogle Scholar
  9. Hawkins BA, Porter EE (2003) Does herbivore diversity depend on plant diversity? The case of California butterflies. Am Nat 161(1):40–49. doi: 10.1086/345479 CrossRefPubMedGoogle Scholar
  10. Hill MO (1973) Diversity and evenness: a unifying notation and its consequences. Ecology 54(2):427–432. doi: 10.2307/1934352 CrossRefGoogle Scholar
  11. Humphries CJ, Williams PH, Vane-Wright RI (1995) Measuring biodiversity value for conservation. Annu Rev Ecol Syst 26:93–111. doi: 10.1146/ CrossRefGoogle Scholar
  12. Hurlbert SH (1971) The nonconcept of species diversity: a critique and alternative parameters. Ecology 52(4):577–586. doi: 10.2307/1934145 CrossRefGoogle Scholar
  13. Izsák J, Papp L (2000) A link between ecological diversity indices and measures of biodiversity. Ecol Model 130(1):151–156. doi: 10.1016/S0304-3800(00)00203-9 CrossRefGoogle Scholar
  14. Jost L (2006) Entropy and diversity. Oikos 113(2):363–375. doi: 10.1111/j.2006.0030-1299.14714.x CrossRefGoogle Scholar
  15. Keylock C (2005) Simpson diversity and the Shannon–Wiener index as special cases of a generalized entropy. Oikos 109(1):203–207. doi: 10.1111/j.0030-1299.2005.13735.x CrossRefGoogle Scholar
  16. Kitahara M, Yumoto M, Kobayashi T (2008) Relationship of butterfly diversity with nectar plant species richness in and around the Aokigahara primary woodland of Mount Fuji, central Japan. Biodivers Conserv 17(11):2713–2734. doi: 10.1007/s10531-007-9265-4 CrossRefGoogle Scholar
  17. Ma M (2005) Species richness vs evenness: independent relationship and different responses to edaphic factors. Oikos 111(1):192–198. doi: 10.1111/j.0030-1299.2005.13049.x CrossRefGoogle Scholar
  18. Magurran AE (2013) Measuring biological diversity. Wiley, New JerseyGoogle Scholar
  19. Mulder C, Bazeley-White E, Dimitrakopoulos P et al (2004) Species evenness and productivity in experimental plant communities. Oikos 107(1):50–63. doi: 10.1111/j.0030-1299.2004.13110.x CrossRefGoogle Scholar
  20. Nowicki P, Settele J, Henry P et al (2008) Butterfly monitoring methods: the ideal and the real world. Isr J Ecol Evol 54(1):69–88. doi: 10.1560/IJEE.54.1.69 CrossRefGoogle Scholar
  21. Nowicki P, Vrabec V, Binzenhöfer B et al (2014) Butterfly dispersal in inhospitable matrix: rare, risky, but long-distance. Landsc Ecol 29(3):401–412. doi: 10.1007/s10980-013-9971-0 CrossRefGoogle Scholar
  22. Pellet J, Bried JT, Parietti D et al (2012) Monitoring butterfly abundance: beyond Pollard walks. PLoS ONE 7(7):e41396. doi: 10.1371/journal.pone.0041396 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Pollard E (1977) A method for assessing changes in the abundance of butterflies. Biol Conserv 12(2):115–134. doi: 10.1016/0006-3207(77)90065-9 CrossRefGoogle Scholar
  24. Pollard E (1988) Temperature, rainfall and butterfly numbers. J Appl Ecol 25:819–828. doi: 10.2307/2403748 CrossRefGoogle Scholar
  25. Pollard E, Moss D, Yates T (1995) Population trends of common British butterflies at monitored sites. J Appl Ecol 32:9–16. doi: 10.2307/2404411 CrossRefGoogle Scholar
  26. Purvis A, Hector A (2000) Getting the measure of biodiversity. Nature 405:212–219. doi: 10.1038/35012221 CrossRefPubMedGoogle Scholar
  27. Ricotta C (2003) Parametric scaling from species relative abundances to absolute abundances in the computation of biological diversity: a first proposal using Shannon’s entropy. Acta Biotheor 51(3):181–188. doi: 10.1023/A:1025142106292 CrossRefPubMedGoogle Scholar
  28. Roy DB, Rothery P, Moss D et al (2001) Butterfly numbers and weather: predicting historical trends in abundance and the future effects of climate change. J Anim Ecol 70(2):201–217. doi: 10.1111/j.1365-2656.2001.00480.x CrossRefGoogle Scholar
  29. Saarinen K, Lahti T, Marttila O (2003) Population trends of Finnish butterflies (Lepidoptera: Hesperioidea, Papilionoidea) in 1991–2000. Biodivers Conserv 12(10):2147–2159. doi: 10.1023/A:1024189828387 CrossRefGoogle Scholar
  30. Schmeller DS, HENRY P, Julliard R et al (2009) Advantages of volunteer-based biodiversity monitoring in Europe. Conserv Biol 23(2):307–316. doi: 10.1111/j.1523-1739.2008.01125.x CrossRefPubMedGoogle Scholar
  31. Schmucki R, Pe’er G, Roy DB et al (2015) A regionally informed abundance index for supporting integrative analyses across butterfly monitoring schemes. J Appl Ecol 53:501–510. doi: 10.1111/1365-2664.12561 CrossRefGoogle Scholar
  32. Stephens PA, Pettorelli N, Barlow J et al (2015) Management by proxy? The use of indices in applied ecology. J Appl Ecol 52(1):1–6. doi: 10.1111/1365-2664.12383 CrossRefGoogle Scholar
  33. Stirling G, Wilsey B (2001) Empirical relationships between species richness, evenness, and proportional diversity. Am Nat 158(3):286–299. doi: 10.1086/321317 CrossRefPubMedGoogle Scholar
  34. Thomas JA (2005) Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups. Philos Trans R Soc Lond B 360(1454):339–357. doi: 10.1098/rstb.2004.1585 CrossRefGoogle Scholar
  35. Tóthmérész B (1995) Comparison of different methods for diversity ordering. J Veg Sci 6(2):283–290. doi: 10.2307/3236223 CrossRefGoogle Scholar
  36. van Swaay C, Warren M (1999) Red data book of European butterflies (Rhopalocera). Council of Europe, StrasbourgGoogle Scholar
  37. van Swaay C, Warren M, Loïs G (2006) Biotope use and trends of European butterflies. J Insect Conserv 10(2):189–209. doi: 10.1007/s10841-006-6293-4 CrossRefGoogle Scholar
  38. van Swaay C, Maes D, Collins S et al (2011) Applying IUCN criteria to invertebrates: how red is the Red List of European butterflies? Biol Conserv 144(1):470–478. doi: 10.1016/j.biocon.2010.09.034 CrossRefGoogle Scholar
  39. Westwood AR, Blair D (2010) Effect of regional climate warming on the phenology of butterflies in boreal forests in Manitoba Canada. Environ Entomol 39(4):1122–1133. doi: 10.1603/EN09143 CrossRefPubMedGoogle Scholar
  40. Wilsey BJ, Chalcraft DR, Bowles CM et al (2005) Relationships among indices suggest that richness is an incomplete surrogate for grassland biodiversity. Ecology 86(5):1178–1184. doi: 10.1890/04-0394 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Zachary G. MacDonald
    • 1
    Email author
  • Scott E. Nielsen
    • 1
  • John H. Acorn
    • 1
  1. 1.Department of Renewable ResourcesUniversity of AlbertaEdmontonCanada

Personalised recommendations