Biodiversity and Conservation

, Volume 26, Issue 2, pp 273–291 | Cite as

Relationships between plant diversity, vegetation cover, and site conditions: implications for grassland conservation in the Greater Caucasus

  • Martin Wiesmair
  • Annette Otte
  • Rainer Waldhardt
Original Paper


Overgrazing, land use abandonment and increasing recreational activities have altered the vegetation of high-montane and subalpine grassland of the Caucasus. The failure of previous restoration efforts with unsuitable and exotic plant species indicates the need for information on the present vegetation and in which way it might change. Within the Greater Caucasus, we have described and quantified the mountain grassland which develops under characteristic overgrazed and eroded site conditions. Further, we have proposed potential native plant species for revegetation to restore and conserve valuable mountain grassland habitats. We used non-metric dimensional scaling ordination and cluster comparison of functional plant groups to describe a gradient of grassland vegetation cover. For our study region, we identified four major vegetation types with increasing occurrence of ruderal pasture weeds and tall herb vegetation on abandoned hay meadows within the subalpine zone. Within high-montane grassland a decline of plant diversity can be observed on sites of reduced vegetation cover. Due to a low potential of the grassland ecosystem to balance further vegetation cover damage, the long-term loss of diverse habitats can be expected. We conclude with management recommendations to prevent erosion and habitat loss of precious mountain grasslands.


Land degradation NMDS Overgrazing Functional plant groups Mountain grassland restoration 



This study contributes to the framework of the major project “Analyzing multiple interrelationships of environmental and societal processes in mountainous regions of Georgia (AMIES)”, funded by the Volkswagen Foundation. The German Academic Exchange Service (DAAD) has partly funded field work in Georgia. We thank our Georgian colleagues George Nakhutsrishvili, Maia Akhalkatsi, Otar Abdalazde and Giorgi Mikeladze. For field work assistance we thank Zezva Asanidze, Nato Tephnadze and Luka Tarielashvili. We thank Josef Scholz vom Hofe for his help with chemical soil analysis and Kristin Ludewig for comments on the manuscript.

Supplementary material

10531_2016_1240_MOESM1_ESM.pdf (952 kb)
Supplementary material 1 (PDF 952 kb)


  1. Akhalkatsi M, Kimeridze M, Kunkele S et al (2003) Wild orchids of Georgia. In: Cauc. Environ. 3. Accessed 17 Feb 2016
  2. Barkman JJ, Doing H, Segal S (1964) Kritische Bemerkungen und Vorschläge zur quantitativen Vegetationsanalyse. Acta Bot Neerlandica 13:394–419. doi: 10.1111/j.1438-8677.1964.tb00164.x CrossRefGoogle Scholar
  3. Calaciura B, Spinelli O (2008) Management of Natura 2000 habitats. 6210 Semi-natural dry grasslands and scrubland facies on calcareous substrates (Festuco-Brometalia) (*important orchid sites). European CommissionGoogle Scholar
  4. Callaway RM, Kikvidze Z, Kikodze D (2000) Facilitation by unpalatable weeds may conserve plant diversity in overgrazed meadows in the Caucasus Mountains. Oikos 89:275–282. doi: 10.1034/j.1600-0706.2000.890208.x CrossRefGoogle Scholar
  5. Caprez R, Spehn E, Nakhutsrishvili G, Körner C (2011) Drought at erosion edges selects for a “hidden” keystone species. Plant Ecol Divers 4:303–311. doi: 10.1080/17550874.2011.600343 CrossRefGoogle Scholar
  6. Critical Ecosystem Partnership Fund (2004) Ecosystem Profile: Caucasus—Biodiversity Hotspot. Accessed 17 Feb 2016
  7. Cuomo GJ, Peterson PR, Singh A et al (2003) Persistence and spread of Kura clover in cool-season grass pastures. Agron J 95:1591. doi: 10.2134/agronj2003.1591 CrossRefGoogle Scholar
  8. de Bello F, Lavorel S, Díaz S et al (2010) Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers Conserv 19:2873–2893. doi: 10.1007/s10531-010-9850-9 CrossRefGoogle Scholar
  9. De Deyn GB, Shiel RS, Ostle NJ et al (2011) Additional carbon sequestration benefits of grassland diversity restoration: soil C sequestration and diversity restoration. J Appl Ecol 48:600–608. doi: 10.1111/j.1365-2664.2010.01925.x CrossRefGoogle Scholar
  10. Dommermuth C (1995) Beschleunigte Massenabtragung im Jennergebiet: Ursachen und Auswirkungen beschleunigter Abtragungsvorgänge in Kulturlandschaftsbereichen der Alpen am Beispiel des Jennergebietes im Nationalpark Berchtesgaden. Nationalparkverwaltung Berchtesgaden, BerchtesgadenGoogle Scholar
  11. Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366. doi: 10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2 Google Scholar
  12. Florineth F, Mittendrein B, Stern R (2002) Untersuchung und Früherkennung der Erosionsanfälligkeit von alpinen Rasenbeständen. Endbericht. The Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management, ViennaGoogle Scholar
  13. Food and Agriculture Organization of the United Nations (ed) (2003) Transhumant grazing systems in temperate Asia. Food and Agricultural Organization of the United Nations, RomeGoogle Scholar
  14. Gao Q, Li Y, Wan Y et al (2006) Grassland degradation in Northern Tibet based on remote sensing data. J Geogr Sci 16:165–173. doi: 10.1007/s11442-006-0204-1 CrossRefGoogle Scholar
  15. Gobejishvili R, King L, Lomidze N et al (2011) Relief and geodynamic processes of high mountainous region of Caucasus (Stepantsminda region). Ivane Javakhishvili Tbilisi State University, Vakhushti Bagrationi Institute of Geography, Publishing House of Tbilisi State University, TbilisiGoogle Scholar
  16. Itonishvili V (1970) Familiy status of Mokheve (Mokheveebis saojakho Kofa), in georgian. Sabchota Sakartvelo, TbilisiGoogle Scholar
  17. Jenny-Lips H (1930) Vegetationsbedingungen und Pflanzengesellschaften auf Felsschutt. Bot Cent Beiheft Abt 2(46):199–296Google Scholar
  18. Kerashvili G (2012) Khevi and Mokheve (Khevi da Mokheveebi), in georgian. Self-publisher, TbilisiGoogle Scholar
  19. Khetskhoveli NN, Kharadze AL, Ivanishvili MA, Gagnidze R (1975) Botanical description of the Georgian military road (Tbilisi-Kazbegi-Ordjonikidze). The Academy of Sciences of the Georgian SSR, The Institute of Botany, LeningradGoogle Scholar
  20. Klein C (2011) Dynamics of landscape structure and land use in the region of Mleta (Greater Caucasus, Georgia) from 1958 to 2011. Diploma thesis, University of BonnGoogle Scholar
  21. Klug B, Scharfetter-Lehrl G, Scharfetter E (2002) Effects of trampling on vegetation above the timberline in the Eastern Alps, Austria. Arct Antarct Alp Res 34:377. doi: 10.2307/1552195 CrossRefGoogle Scholar
  22. Körner C (1980) Ökologische Untersuchungen an Schafweiden im Zentralkaukasus. Alm-Bergbauer 5:151–161Google Scholar
  23. Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  24. Krautzer B, Wittmann H (2006) Restoration of alpine ecosystems. In: van Andel J, Aronson J (eds) Restoration ecology: the new frontier. Blackwell Pub, Malden, pp 208–220Google Scholar
  25. Krautzer B, Peratoner G, Bozzo F (2004) Site-specific grasses and herbs: seed production and use for restoration of mountain environments. Food and Agricultural Organization of the United Nations, RomeGoogle Scholar
  26. Krautzer B, Graiss W, Peratoner G et al (2011) The influence of recultivation technique and seed mixture on erosion stability after restoration in mountain environment. Nat Hazards 56:547–557. doi: 10.1007/s11069-009-9491-z CrossRefGoogle Scholar
  27. Krautzer B, Graiss W, Klug B (2013) Ecological Restoration of Ski-Runs. In: The impacts of skiing and related winter recreational activities on mountain environments. Bentham e books, Sharjah, pp 184–209Google Scholar
  28. Lichtenegger E, Bedoschwili D, Hübl E, Scharfetter E (2006) Höhenstufengliederung der Grünlandvegetation im Zentralkaukasus. Verh Zool-Boot Ges Österr 143:43–81Google Scholar
  29. Liu Z-Y, Huang J-F, Wu X-H, Dong Y-P (2007) Comparison of vegetation indices and red-edge parameters for estimating grassland cover from canopy reflectance data. J Integr Plant Biol 49:299–306. doi: 10.1111/j.1744-7909.2007.00401.x CrossRefGoogle Scholar
  30. Lordkipanidse O (1991) Archäologie in Georgien: von der Altsteinzeit zum Mittelalter. VCH, WeinheimGoogle Scholar
  31. Magiera A, Feilhauer H, Otte A et al (2013) Relating canopy reflectance to the vegetation composition of mountainous grasslands in the Greater Caucasus. Agric Ecosyst Environ 177:101–112. doi: 10.1016/j.agee.2013.05.017 CrossRefGoogle Scholar
  32. Magiera A, Feilhauer H, Tephnadze N et al (2015) Separating reflectance signatures of shrub species—a case study in the Central Greater Caucasus. Appl Veg Sci. doi: 10.1111/avsc.12205 Google Scholar
  33. Martin C, Pohl M, Alewell C et al (2010) Interrill erosion at disturbed alpine sites: effects of plant functional diversity and vegetation cover. Basic Appl Ecol 11:619–626. doi: 10.1016/j.baae.2010.04.006 CrossRefGoogle Scholar
  34. Ministry of Environment Protection, Natural Resources of Georgia, UNDP Country Office (2009) Georgia’s Second National Communication to the UNFCCC. TbilisiGoogle Scholar
  35. Moismann T (1984) Das Stabilitätspotential alpiner Geoökosysteme gegenüber Bodenstörungen durch Skipistenbau. Verhandlungen Ges Für Ökol, pp 167–176Google Scholar
  36. Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. doi: 10.1038/35002501 CrossRefPubMedGoogle Scholar
  37. Nakhutsrishvili G (1999) The vegetation of Georgia (Caucasus). Braun-Blanquetia 15:5–74Google Scholar
  38. Nakhutsrishvili G, Abdaladze O, Akhalkatsi M (2006) Biotope types of the treeline of the Central Greater Caucasus. In: Gafta DD, Akeroyd DJ (eds) Nature conservation. Springer, Berlin, pp 211–225CrossRefGoogle Scholar
  39. Oksanen J, Blanchet G, Kindt R et al (2013) Vegan: community ecology packageGoogle Scholar
  40. Ozenda P (1988) Die Vegetation der Alpen im europäischen Gebirgsraum. Fischer, StuttgartGoogle Scholar
  41. Parolly G (2014) Botanic garden section „Caucasus and South-west Asia“. In: Plant Diversity between the Black and Caspian Sea. Berlin, pp 188–215Google Scholar
  42. Plachter H, Hampicke U (eds) (2010) Large-scale livestock grazing: a management tool for nature conservation. Springer, BerlinGoogle Scholar
  43. Pohl M, Alig D, Körner C, Rixen C (2009) Higher plant diversity enhances soil stability in disturbed alpine ecosystems. Plant Soil 324:91–102. doi: 10.1007/s11104-009-9906-3 CrossRefGoogle Scholar
  44. Purevdorj T, Tateishi R, Ishiyama T, Honda Y (1998) Relationships between percent vegetation cover and vegetation indices. Int J Remote Sens 19:3519–3535. doi: 10.1080/014311698213795 CrossRefGoogle Scholar
  45. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing.
  46. Riedl H (1983) Die Ergebnisse des MaB-Projekts “Sameralm”: ein Beitrag zur sozioökonomisch gesteuerten Veränderung subalpiner Landschaftssysteme. Universitätsverlag Wagner, InnsbruckGoogle Scholar
  47. Roberts D (2013) labdsv: ordination and multivariate analysis for ecology. R package version 1.6-1Google Scholar
  48. Schaffner U, Kleijn D, Brown V, Müller-Schärer H (2001) Veratrum album in montane grasslands: a model system for implementing biological control in land management practices of high biodiversity habitats. Biocontrol News Inf 22:19N–27NGoogle Scholar
  49. Schmerling R, Dolidze V (1991) From Tbilisi to Caucasus (Tbilisidan Kavkavamde), in georgian. Metsniereba, TbilisiGoogle Scholar
  50. Solomon JC, Shul'kina T, Schatz GE (eds) (2014) Red list of the endemic plants of the Caucasus: Armenia, Azerbaijan, Georgia, Iran, Russia, and Turkey. Missouri Botanical Garden Press, St. LouisGoogle Scholar
  51. Stahr A, Langenscheidt E (2015) Landforms of high mountains. Springer, BerlinCrossRefGoogle Scholar
  52. Tasser E, Mader M, Tappeiner U (2003) Effects of land use in alpine grasslands on the probability of landslides. Basic Appl Ecol 4:271–280. doi: 10.1078/1439-1791-00153 CrossRefGoogle Scholar
  53. Tephnadze N, Abdaladze O, Nakhutsrishvili G et al (2014) The impacts of management and site conditions on the phytodiversity of the upper montane and subalpine belts in the Central Greater Caucasus. Phytocoenologia 44:255–291. doi: 10.1127/0340-269X/2014/0044-0579 CrossRefGoogle Scholar
  54. The Plant List (2013) Version 1.1. Published on the Internet. Accessed 8 Mar 2016
  55. Vallentine JF (2001) Grazing management, 2nd edn. Academic Press, San DiegoGoogle Scholar
  56. VDLUFA (1997) Phosphordüngung nach Bodenuntersuchung und Pflanzenbedarf. VDLUFA, DarmstadtGoogle Scholar
  57. VDLUFA (1999) Kalium-Düngung nach Bodenuntersuchung und Pflanzenbedarf Richtwerte für die Gehaltsklasse C. VDLUFA, DarmstadtGoogle Scholar
  58. Wellstein C, Otte A, Waldhardt R (2007) Impact of site and management on the diversity of central European mesic grassland. Agric Ecosyst Environ 122:203–210. doi: 10.1016/j.agee.2006.12.033 CrossRefGoogle Scholar
  59. Wiesmair M, Feilhauer H, Magiera A et al (2016) Estimating vegetation cover from high-resolution satellite data to assess grassland degradation in the Georgian Caucasus. Mt Res Dev 36:56–65. doi: 10.1659/MRD-JOURNAL-D-15-00064.1 CrossRefGoogle Scholar
  60. Zöttl H (1952) Beitrag zur Ökologie alpiner Kalkschuttstandorte. Phyton 4:160–175Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Martin Wiesmair
    • 1
    • 2
  • Annette Otte
    • 1
    • 2
  • Rainer Waldhardt
    • 2
  1. 1.Center for International Development and Environmental Research (ZEU)Justus Liebig University GiessenGiessenGermany
  2. 2.Division of Landscape Ecology and Landscape PlanningJustus Liebig University GiessenGiessenGermany

Personalised recommendations