Advertisement

Biodiversity and Conservation

, Volume 26, Issue 1, pp 63–83 | Cite as

A multi-scale approach for identifying conservation needs of two threatened sympatric steppe birds

  • Ana Benítez-LópezEmail author
  • Javier Viñuela
  • François Mougeot
  • Jesús T. García
Original Paper

Abstract

Habitat selection is an inherently scale-sensitive process in which detected selection patterns frequently depend on the scale of analysis employed. We used a multi-scale modelling approach to identify how the distributions of two sympatric birds are shaped by differential selection at the landscape, land use and microhabitat scales and by human infrastructures as possible sources of disturbance. We studied two threatened steppe birds, the pin-tailed sandgrouse (PTS) and black-bellied sandgrouse (BBS) in central Spain. Land use gradients explained most of the variation in PTS and BBS occurrence, but there was cross-scale interdependence between the lower (microhabitat) and upper (landscape) spatial scales for the PTS. Synergies between the three scales highlighted the importance of integrating habitat scales in a single modelling framework. The process of habitat selection was also modulated by human disturbance. Both species selected ploughs of large size distant from houses, tracks and other infrastructures, although BBS exhibited broader habitat tolerance than the PTS, and was more sensitive to human disturbance. At microhabitat scale, PTS selected ploughs with greater green vegetation cover and insect abundance and fallows with lower dry vegetation cover and height but greater stone cover. This might reflect a trade-off between camouflage (vegetation and stone cover for concealment) and visibility for predator detection and escape. Ploughs and fallows should be maintained by means of traditional 2-year rotations and low management during the breeding season. Ongoing urbanization trends and infrastructure development inside protected areas should be limited. Multi-scale models were key to identify scale-specific factors that determine sandgrouse habitat preferences and conservation requirements at appropriate levels, and are recommended to better guide regional and local conservation efforts of threatened species.

Keywords

Conservation Ecological modelling Habitat selection Human disturbance Pterocles alchata Pterocles orientalis 

Notes

Acknowledgments

We are deeply grateful to all people that help us with fieldwork. Special recognition goes to Fidel, Iván García and Jesús Carrasco for their efforts. Three anonymous reviewers and the associate editor made valuable comments on the manuscript. Sandgrouse illustrations belong to SEO-BirdLife. This study is a contribution to the CGL2008-04282/BOS Project funded by the Spanish Ministry of Science. A. Benítez-López was supported by the CGL2008-04282/BOS Project and by the 2012-BIN-4462 research Grant conceded by the UCLM. F. Mougeot was supported by a distinguished visitor award from the University of Cape Town (2015).

Supplementary material

10531_2016_1222_MOESM1_ESM.docx (6 mb)
Supplementary material 1 (DOCX 6126 kb)

References

  1. Barbosa A, Brown J, Jimenez-Valverde A, Real R (2015) modEvA: model evaluation and analysis. R package ver 1Google Scholar
  2. Beatley T (2014) Habitat conservation planning: endangered species and urban growth. University of Texas Press, AustinGoogle Scholar
  3. Benítez-López A, Alkemade R, Verweij PA (2010a) The impacts of roads and other infrastructure on mammal and bird populations: a meta-analysis. Biol Conserv 143:1307–1316. doi: 10.1016/j.biocon.2010.02.009 CrossRefGoogle Scholar
  4. Benítez-López A, Martín CA, Casas F, Mougeot F, García JT, Viñuela J (2010b) Áreas de campeo y movimientos estacionales de la ganga ibérica Pterocles alchata. In: Casinello J, Castro F (eds) XIII Congreso Nacional y X Iberoamericano de Etología. Ponencias y comunicaciones Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC-UCLM-JCCM). Ciudad Real, p 130Google Scholar
  5. Benítez-López A, Mougeot F, Martín C, Casas F, Calero-Riestra M, García JT, Viñuela J (2011) An improved night-lighting technique for the selective capture of sandgrouse and other steppe birds. Eur J Wildl Res 57:389–393. doi: 10.1007/s10344-010-0437-2 CrossRefGoogle Scholar
  6. Benítez-López A, Viñuela J, Hervás I, Suárez F, García JT (2014a) Modelling sandgrouse (Pterocles spp.) distributions and large-scale habitat requirements in Spain: implications for conservation. Environ Conserv 41:132–143. doi: 10.1017/s0376892913000192 CrossRefGoogle Scholar
  7. Benítez-López A, Viñuela J, Suárez F, Hervás I, García JT (2014b) Niche-habitat mechanisms and biotic interactions explain the coexistence and abundance of congeneric sandgrouse species. Oecologia 176:193–206. doi: 10.1007/s00442-014-3010-y CrossRefPubMedGoogle Scholar
  8. Benítez-López A, Casas F, Mougeot F, García JT, Martín CA, Viñuela J (2015) Individual traits and extrinsic factors influence survival of the threatened pin-tailed sandgrouse (Pterocles alchata). Biol Conserv 187:192–200CrossRefGoogle Scholar
  9. Bivand RS, Piras G (2015) Comparing implementations of estimation methods for spatial econometrics. J Stat Softw 63:1–36Google Scholar
  10. Bivand RS, Hauke J, Kossowski T (2013) Computing the Jacobian in Gaussian spatial autoregressive models: an illustrated comparison of available methods. Geogr Anal 45:150–179CrossRefGoogle Scholar
  11. Blomquist SM, Hunter ML Jr. (2010) A multi-scale assessment of amphibian habitat selection: wood frog response to timber harvesting. Ecoscience 17:251–264CrossRefGoogle Scholar
  12. Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055CrossRefGoogle Scholar
  13. Boyce MS, Vernier PR, Nielsen SE, Schmiegelow FK (2002) Evaluating resource selection functions. Ecol Model 157:281–300CrossRefGoogle Scholar
  14. Brown JS (1992) Patch use under predation risk: I. Models and predictions. Ann Zool Fenn 4:301–309Google Scholar
  15. Calenge C (2006) The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol Model 197:516–519CrossRefGoogle Scholar
  16. Casas F, Benítez-López A, García JT, Martín CA, Viñuela J, Mougeot F (2015) Assessing the short-term effects of capture, handling and tagging of sandgrouse. Ibis 157:115–124. doi: 10.1111/ibi.12222 CrossRefGoogle Scholar
  17. Chevan A, Sutherland M (1991) Hierarchical partitioning. Am Stat 45:90–96Google Scholar
  18. Courbin N, Fortin D, Dussault C, Courtois R (2009) Landscape management for woodland caribou: the protection of forest blocks influences wolf-caribou co-occurrence. Landsc Ecol 24:1375–1388CrossRefGoogle Scholar
  19. De Borbón M, Barros C, Guadalfajara R, De Juana E, Herranz J (1999) Parámetros reproductivos de la ganga ibérica (Pterocles alchata) y la ganga ortega (P. orientalis). In: Herranz J, Suárez F (eds) La ganga ibérica (Pterocles alchata) y la ganga ortega (Pterocles orientalis) en España. Distribución, abundancia, biología y conservación. Colección técnica, Ministerio de Medio Ambiente, Organismo Autónomo Parques Nacionales, Madrid, pp 239–260Google Scholar
  20. Dormann CF, McPherson JM, Araújo MB, Bivand R, Bolliger J, Carl G, Davies RG, Hirzel A, Jetz W, Kissling WD, Kühn I, Ohlemüller R, Peres-Neto PR, Reineking B, Schröder B, Schurr FM, Wilson R (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–628CrossRefGoogle Scholar
  21. Dray S, Legendre P, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Model 196:483–493CrossRefGoogle Scholar
  22. Du Toit JT (2010) Considerations of scale in biodiversity conservation. Anim Conserv 13:229–236. doi: 10.1111/j.1469-1795.2010.00355.x CrossRefGoogle Scholar
  23. Herranz J, Suárez F (1999) La ganga ibérica (Pterocles alchata) y la ganga ortega (Pterocles orientalis) en España. Distribución, abundancia, biología y conservación. Colección Técnica, Ministerio de Medio Ambiente, Organismo Autónomo Parques Nacionales, MadridGoogle Scholar
  24. Hervás I, Suárez F (2007) Informe sobre el seguimiento de las aves del entorno del futuro Aeropuerto de Ciudad Real y la ZEPA “ Campo de Calatrava” y del programa de medidas agroambientales. Departamento de Ecología, Universidad Autónoma de Madrid, MadridGoogle Scholar
  25. Hutto R (1985) Habitat selection by nonbreeding migratory land birds. In: Cody M (ed) Habitat selection in birds. Academic, Orlando, pp 455–476Google Scholar
  26. Indermaur L, Winzeler T, Schmidt BR, Tockner K, Schaub M (2009) Differential resource selection within shared habitat types across spatial scales in sympatric toads. Ecology 90:3430–3444CrossRefPubMedGoogle Scholar
  27. Johnson DH (1980) The comparison of usage and availability measurements for evaluating resource preference. Ecology 61:65–71CrossRefGoogle Scholar
  28. Johnson CJ, Nielsen SE, Merrill EH, McDonald TL, Boyce MS (2006) Resource selection functions based on use-availability data: theoretical motivation and evaluation methods. J Wildl Manag 70:347–357CrossRefGoogle Scholar
  29. Kuhn M (2015) Caret: classification and regression training. Astrophys Source Code Libr 1:05003Google Scholar
  30. Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74:1659–1673CrossRefGoogle Scholar
  31. Leiner NO, Dickman CR, Silva WR (2010) Multiscale habitat selection by slender opossums (Marmosops spp.) in the Atlantic forest of Brazil. J Mammal 91:561–565CrossRefGoogle Scholar
  32. Levin S (1992) The problem of pattern and scale in ecology: the Robert H. MacArthur award lecture. Ecology 73:1943–1967CrossRefGoogle Scholar
  33. Lloyd P, Plagányi É, Lepage D, Little RM, Crowe TM (2000) Nest-site selection, egg pigmentation and clutch predation in the ground-nesting Namaqua Sandgrouse Pterocles namaqua. Ibis 142:123–131CrossRefGoogle Scholar
  34. MacArthur R, Levins R (1967) The limiting similarity, convergence, and divergence of coexisting species. Am Nat 101:377–385CrossRefGoogle Scholar
  35. Mackey BG, Lindenmayer DB (2001) Towards a hierarchical framework for modelling the spatial distribution of animals. J Biogeogr 28:1147–1166. doi: 10.1046/j.1365-2699.2001.00626.x CrossRefGoogle Scholar
  36. Magaña M, Alonso JC, Martín CA, Bautista LM, Martín B (2010) Nest-site selection by Great Bustards Otis tarda suggests a trade-off between concealment and visibility. Ibis 152:77–89. doi: 10.1111/j.1474-919X.2009.00976.x CrossRefGoogle Scholar
  37. Manly BFJ, McDonald LL, Thomas DL, McDonald TL, Erickson WP (2003) Resource selection by animals—statistical design and analysis for field studies, 2nd edn. Kluwer Academic Publishers, LondonGoogle Scholar
  38. Martín CA, Casas F, Mougeot F, García JT, Viñuela J (2010) Positive interactions between vulnerable species in agrarian pseudo-steppes: habitat use by pin-tailed sandgrouse depends on its association with the little bustard. Anim Conserv 13:383–389. doi: 10.1111/j.1469-1795.2010.00349.x CrossRefGoogle Scholar
  39. Martín B, Martín CA, Palacín C, Sastre P, Ponce C, Bravo C (2014) Habitat preferences of sympatric sandgrouse during the breeding season in Spain: a multi-scale approach. Eur J Wildl Res 60:625–636. doi: 10.1007/s10344-014-0826-z CrossRefGoogle Scholar
  40. Martinez C (1994) Habitat selection by the little bustard Tetrax tetrax in cultivated areas of Central Spain. Biol Conserv 67:125–128CrossRefGoogle Scholar
  41. Martínez JA, Serrano D, Zuberogoitia I (2003) Predictive models of habitat preferences for the Eurasian eagle owl Bubo bubo: a multiscale approach. Ecography 26:21–28CrossRefGoogle Scholar
  42. Mateo-Tomás P, Olea PP (2009) Combining scales in habitat models to improve conservation planning in an endangered vulture. Acta Oecol 35:489–498. doi: 10.1016/j.actao.2009.03.004 CrossRefGoogle Scholar
  43. Mayor SJ, Schneider DC, Schaefer JA, Mahoney SP (2009) Habitat selection at multiple scales. Ecoscience 16:238–247CrossRefGoogle Scholar
  44. McGarigal K, Cushman S, Stafford S (2000) Multivariate statistics for wildlife and ecology research. Springer, New YorkCrossRefGoogle Scholar
  45. McGarigal K, Wan HY, Zeller KA, Timm BC, Cushman SA (2016) Multi-scale habitat selection modeling: a review and outlook. Landsc Ecol. doi: 10.1007/s10980-016-0374-x Google Scholar
  46. Morales M, Traba J, Carriles E, Delgado M, de la Morena E (2008) Sexual differences in microhabitat selection of breeding little bustards Tetrax tetrax: ecological segregation based on vegetation structure. Acta Oecol 34:345–353CrossRefGoogle Scholar
  47. Morales MB, Traba J, Delgado MP, De La Morena ELG (2013) The use of fallows by nesting Little Bustard Tetrax tetrax females: implications for conservation in mosaic cereal farmland. Ardeola 60:85–97. doi: 10.13157/arla.60.1.2012.85 CrossRefGoogle Scholar
  48. Moreau G, Fortin D, Couturier S, Duchesne T (2012) Multi-level functional responses for wildlife conservation: the case of threatened caribou in managed boreal forests. J Appl Ecol 49:611–620. doi: 10.1111/j.1365-2664.2012.02134.x CrossRefGoogle Scholar
  49. Morris DW (1987) Ecological scale and habitat use. Ecology 68:362–369CrossRefGoogle Scholar
  50. Mougeot F, Benítez-López A, Casas F, García JT, Viñuela J (2014) A temperature-based monitoring of nest attendance patterns and disturbance effects during incubation by ground-nesting sandgrouse. J Arid Environ 102:89–97CrossRefGoogle Scholar
  51. Park KJ, Robertson PA, Campbell ST, Foster R, Russell ZM, Newborn D, Hudson PJ (2001) The role of invertebrates in the diet, growth and survival of red grouse (Lagopus lagopus scoticus) chicks. J Zool 254:137–145CrossRefGoogle Scholar
  52. Pearce J, Ferrier S (2000) Evaluating the predictive performance of habitat models developed using logistic regression. Ecol Model 133:225–245CrossRefGoogle Scholar
  53. Razgour O, Hanmer J, Jones G (2011) Using multi-scale modelling to predict habitat suitability for species of conservation concern: the grey long-eared bat as a case study. Biol Conserv 144:2922–2930. doi: 10.1016/j.biocon.2011.08.010 CrossRefGoogle Scholar
  54. R Development Core Team (2015) R: a language and environment for statistical computing vol http://www.R-project.org. R Foundation for Statistical Computing, Vienna
  55. Rosenzweig ML (1981) A theory of habitat selection. Ecology 62:327–335CrossRefGoogle Scholar
  56. Sala OE et al (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774CrossRefPubMedGoogle Scholar
  57. Sandel B, Smith AB (2009) Scale as a lurking factor: incorporating scale-dependence in experimental ecology. Oikos 118:1284–1291CrossRefGoogle Scholar
  58. Steen DA, Linehan JM, Smith LL (2010) Multiscale habitat selection and refuge use of common kingsnakes, Lampropeltis getula, in southwestern Georgia. Copeia 2010:227–231CrossRefGoogle Scholar
  59. Suárez F, Hervás I, Herranz J, Del Moral JC (2006) La ganga ibérica y la ganga ortega en España: población en 2005 y método de censo. SEO/BirdLife, MadridGoogle Scholar
  60. Traba J, García de la Morena E, Morales M, Suárez F (2007) Determining high value areas for steppe birds in Spain: hot spots, complementarity and the efficiency of protected areas. Biodivers Conserv 16:3255–3275CrossRefGoogle Scholar
  61. Traba J, Acebes P, Malo J, García J, Carriles E, Radi M, Znari M (2013) Habitat selection and partitioning of the black-bellied sandgrouse (Pterocles orientalis), the stone curlew (Burhinus oedicnemus) and the cream-coloured courser (Cursorius cursor) in arid areas of North Africa. J Arid Environ 94:10–17CrossRefGoogle Scholar
  62. Walsh C, Mac Nally R (2013) Package hier.part: hierarchical partitioning, version 1.0-4. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  63. Zimmerman GS, Gutiérrez R, Thogmartin WE, Banerjee S (2009) Multiscale habitat selection by Ruffed Grouse at low population densities. Condor 111:294–304CrossRefGoogle Scholar
  64. Znari M, Aourir M, Radi M, Melin JM (2008) Breeding biology of the black-bellied sandgrouse Pterocles orientalis in west-central Morocco. Ostrich J Afr Ornithol 79:53–60CrossRefGoogle Scholar
  65. Zuur AF, Ieno EN, Smith GM (2007) Analysing ecological data. Springer, New YorkCrossRefGoogle Scholar
  66. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Instituto de Investigación en Recursos CinegéticosIREC (CSIC-UCLM-JCCM)Ciudad RealSpain
  2. 2.Percy FitzPatrick Institute of African OrnithologyUniversity of Cape TownCape TownSouth Africa
  3. 3.Department of Environmental Science, Institute for Wetland and Water ResearchRadboud UniversityNijmegenThe Netherlands

Personalised recommendations