Advertisement

Biodiversity and Conservation

, Volume 25, Issue 14, pp 3023–3041 | Cite as

Hybrid ecosystems can contribute to local biodiversity conservation

  • Liis KasariEmail author
  • Liina Saar
  • Francesco de Bello
  • Krista Takkis
  • Aveliina Helm
Original Paper
Part of the following topical collections:
  1. Biodiversity protection and reserves

Abstract

Calcareous grasslands have become severely threatened habitats in Europe. The aim of this study was to investigate the changes in plant species richness, and functional and phylogenetic diversity in northern Estonian calcareous (alvar) grasslands resampled after 90 years of land-use change. Functional traits characterizing species that have benefited most from decreased habitat area and altered environmental conditions, and additional species that can potentially inhabit the remaining grassland patches were identified. Also changes in the relative amount of habitat-specific species were studied to detect a possible decrease in habitat integrity. Although grasslands in the studied region had lost most of their original area (~90 %), species richness had substantially increased due to invasion by more competitive, nutrient-demanding native species. Functional diversity generally increased, whereas phylogenetic diversity showed no response to altered conditions. Overall, these grasslands have lost their integrity as calcareous grassland habitat type in the region, because the relative amount of habitat-specific characteristic species has declined significantly. However, although the grasslands have transformed to a ‘hybrid’ habitat type and restoration to their previous state is likely not reasonable, such degraded species-rich grassland fragments can still be recognized as important habitats to preserve high local biodiversity and several characteristic species of calcareous grasslands. As current landscapes consist of an increasing number of hybrid and novel communities, new tools to supplement traditional conservation or restoration practices are necessary to recognize and maintain regions and habitats of high local biodiversity.

Keywords

Calcareous grassland Dark diversity Functional diversity Habitat integrity Native ‘aliens’ Phylogenetic diversity 

Notes

Acknowledgments

We are grateful to Pille Gerhold for helping with phylogenetic methods, and for comments and ideas on earlier drafts. We also thank Robert Szava-Kovats for English language editing, and two anonymous reviewers for constructive and helpful comments. LK, LS, KT and AH were financed by the Estonian Research Council (ETF 9223), by Estonian Ministry of Education and Research (IUT 20-29) and by European Commission through the European Regional Development Fund (Centre of Excellence EcolChange). FdB was supported by the Czech Science Foundation, grant GA16-15012S.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10531_2016_1218_MOESM1_ESM.pdf (1.2 mb)
Online Resource 1 (PDF 1186 kb)
10531_2016_1218_MOESM2_ESM.xlsx (36 kb)
Online Resource 2 (XLSX 36 kb)
10531_2016_1218_MOESM3_ESM.pdf (21 kb)
Online Resource 3 (PDF 20 kb)
10531_2016_1218_MOESM4_ESM.pdf (437 kb)
Online Resource 4 (PDF 436 kb)
10531_2016_1218_MOESM5_ESM.pdf (1.1 mb)
Online Resource 5 (PDF 1086 kb)
10531_2016_1218_MOESM6_ESM.pdf (22 kb)
Online Resource 6 (PDF 21 kb)

References

  1. Abbott I, Marchant N, Cranfield R (2000) Long-term change in the floristic composition and vegetation structure of Carnac Island, Western Australia. J Biogeogr 27:333–346. doi: 10.1046/j.1365-2699.2000.00409.x CrossRefGoogle Scholar
  2. Altesor A, Di Landro E, May H, Ezcurra E (1998) Long-term species change in a Uruguayan grassland. J Veg Sci 9:173–180. doi: 10.2307/3237116 CrossRefGoogle Scholar
  3. Amici V, Landi S, Frascaroli F, Rocchini D, Santi E, Chiarucci A (2015) Anthropogenic drivers of plant diversity: perspective on land use change in a dynamic cultural landscape. Biodivers Conserv 24:3185–3199. doi: 10.1007/s10531-015-0949-x CrossRefGoogle Scholar
  4. Andrade ER, Jardim JG, Santos BA, Melo FPL, Talora DC, Faria D, Cazetta E (2015) Effects of habitat loss on taxonomic and phylogenetic diversity of understory Rubiaceae in Atlantic forest landscapes. Forest Ecol Manag 349:73–84. doi: 10.1016/j.foreco.2015.03.049 CrossRefGoogle Scholar
  5. Bagaria G, Helm A, Rodà F, Pino J (2015) Assessing coexisting plant extinction debt and colonization credit in a grassland–forest change gradient. Oecologia 179:823–834. doi: 10.1007/s00442-015-3377-4 CrossRefPubMedGoogle Scholar
  6. Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustmante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman JW, Fenn M, Gilliam F, Nordin A, Pardo L, De Vries W (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59. doi: 10.1890/08-1140.1 CrossRefPubMedGoogle Scholar
  7. Brückmann SV, Krauss J, Steffan-Dewenter I (2010) Butterfly and plant specialists suffer from reduced connectivity in fragmented landscapes. J Appl Ecol 47:799–809. doi: 10.1111/j.1365-2664.2010.01828.x CrossRefGoogle Scholar
  8. Cadotte MW, Cavender-Bares J, Tilman D, Oakley TH (2009) Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PLoS One 4:1–9. doi: 10.1371/journal.pone.0005695 CrossRefGoogle Scholar
  9. Carrol JA, Caporn SJM, Johnson D, Morecroft MD, Lee JA (2003) The interactions between plant growth, vegetation structure and soil processes in semi-natural acidic and calcareous grassland receiving long-term inputs of simulated pollutant nitrogen deposition. Environ Pollut 121:363–376. doi: 10.1016/S0269-7491(02)00241-5 CrossRefGoogle Scholar
  10. Chytrý M, Draži T, Hájek M, Kalníková V, Preislerová Z, Šibík J, Ujházy K, Axmanová I, Bernátová D, Blanár D, Dančák M, Dřevojan P, Fajmon K, Galvánek D, Hájková P, Herben T, Hrivnák R, Janeček Š, Janišová M, Jiráská Š, Kliment J, Kochjarová J, Lepš J, Leskovjanská A, Merunková K, Mládek J, Slezák M, Šeffer J, Šefferová V, Škodová I, Uhlířová J, Ujházyová M, Vymazalová M (2015) The most species-rich plant communities in the Czech Republic and Slovakia (with new world records). Preslia 87:217–278Google Scholar
  11. de Bello F, Lepš J, Sebastià M-T (2006) Variations in species and functional plant diversity along climatic and grazing gradients. Ecography 29:801–810. doi: 10.1111/j.2006.0906-7590.04683.x CrossRefGoogle Scholar
  12. de Bello F, Carmona CP, Lepš J, Szava-Kovats R, Pärtel M (2016) Functional diversity through the mean trait dissimilarity: resolving shortcomings with existing paradigms and algorithms. Oecologia 180:933–940. doi: 10.1007/s00442-016-3546-0 CrossRefPubMedGoogle Scholar
  13. Dengler J, Janišová M, Török P, Wellstein C (2014) Biodiversity of Palaearctic grasslands: a synthesis. Agric Ecosyst Environ 182:1–14. doi: 10.1016/j.agee.2013.12.015 CrossRefGoogle Scholar
  14. Dias ATC, Berg MP, de Bello F, Van Oosten AR, Bílá K, Moretti M (2013) An experimental framework to identify community functional components driving ecosystem processes and services delivery. J Ecol 101:29–37. doi: 10.1111/1365-2745.12024 CrossRefGoogle Scholar
  15. Diekmann M, Jandt U, Alard D, Bleeker A, Corcket E, Gowing DJG, Stevens CJ, Duprè C (2014) Long-term changes in calcareous grassland vegetation in North-western Germany—No decline in species richness, but a shift in species composition. Biol Conserv 172:170–179. doi: 10.1016/j.biocon.2014.02.038 CrossRefGoogle Scholar
  16. Durka W, Michalski SG (2012) Daphne: a dated phylogeny of a large European flora for phylogenetically informed ecological analyses: ecological archives E093-214. Ecology 93:2297. doi: 10.1890/12-0743.1 CrossRefGoogle Scholar
  17. Ellenberg H, Weber HE, Dull R, Wirth V, Werner W, Paulißen D (1991) Zeigerwerte von Pflanzen in Mitteleuropa. Scr Geobot 18:1–248Google Scholar
  18. Ellis EC, Antill EC, Kreft H (2012) All is not loss: plant biodiversity in the anthropocene. PLoS One 7:e30535. doi: 10.1371/journal.pone.0030535 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Eriksson O, Wikström S, Eriksson Å, Lindborg R (2006) Species-rich Scandinavian grasslands are inherently open to invasion. Biol Invasions 8:355–363. doi: 10.1007/s10530-004-4720-6 CrossRefGoogle Scholar
  20. Fraser LH, Pither J, Jentsch A, Sternberg M, Zobel M, Askarizadeh D, Bartha S, Beierkuhnlein C, Bennett JA (2015) Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science 349:302–306. doi: 10.1126/science.aab3916 CrossRefPubMedGoogle Scholar
  21. Garrard GE, Bekessy SA, McCarthy MA, Wintle BA (2008) When have we looked hard enough? A novel method for setting minimum survey effort protocols for flora surveys. Austral Ecol 33:986–998. doi: 10.1111/j.1442-9993.2008.01869.x CrossRefGoogle Scholar
  22. Gerhold P, Pärtel M, Liira J, Zobel K, Prinzing A (2008) Phylogenetic structure of local communities predicts the size of the regional species pool. J Ecol 96:709–712. doi: 10.1111/j.1365-2745.2008.01386.x CrossRefGoogle Scholar
  23. Gerhold P, Cahill JF Jr, Winter M, Bartish IV, Prinzing A (2015) Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Funct Ecol 29:600–614. doi: 10.1111/1365-2435.12425 CrossRefGoogle Scholar
  24. Gower CJ (1971) A general coefficient of sililarity and some of its properties. Biometrics 27:857–874. doi: 10.2307/2528823 CrossRefGoogle Scholar
  25. Grime PJ (2006) Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences. J Veg Sci 17:255–260. doi: 10.1111/j.1654-1103.2006.tb02444.x CrossRefGoogle Scholar
  26. Helm A (2011) Eesti loopealsed ja kadastikud. Juhend koosluste hooldamiseks ja taastamiseks (Alvar grasslands and juniper shrublands in Estonia. Instructions for habitat management and restoration). Guide for Estonian Environmental Board. (in Estonian)Google Scholar
  27. Helm A, Hanski I, Pärtel M (2006) Slow response of plant species richness to habitat loss and fragmentation. Ecol Lett 9:72–77. doi: 10.1111/j.1461-0248.2005.00841.x PubMedGoogle Scholar
  28. Helm A, Zobel M, Moles AT, Szava-Kovats R, Pärtel M (2015) Characteristic and derived diversity: implementing the species pool concept to quantify conservation condition of habitats. Divers Distrib 21:711–721. doi: 10.1111/ddi.12285 CrossRefGoogle Scholar
  29. Hintze C, Heydel F, Hoppe C, Cunze S, König A, Tackenberg O (2013) D3: the dispersal and diaspore database—baseline data and statistics on seed dispersal. Perspect Plant Ecol Evol Syst 15:180–192. doi: 10.1016/j.ppees.2013.02.001 CrossRefGoogle Scholar
  30. Hobbs RJ, Higgs E, Hall CM, Bridgewater P, Chapin FS III, Ellis EC, Ewel JJ, Hallett LM, Harris J, Hulvey KB, Jackson ST, Kennedy PL, Kueffer C, Lach L, Lantz TC, Lugo AE, Mascaro J, Murphy SD, Nelson CR, Perring MP, Richardson DM, Seastedt TR, Standish RJ, Starzomski BM, Suding KN, Tognetti PM, Yakob L, Yung L (2014) Managing the whole landscape: historical, hybrid, and novel ecosystems. Front Ecol Environ 12:557–564. doi: 10.1890/130300 CrossRefGoogle Scholar
  31. Hönigová I, Vačkář D, Lorencová E, Melichar J, Götzl M, Sonderegger G, Oušková V, Hošek M, Chobot K (2012) Survey on grassland ecosystem services. Report to the EEA—European Topic Centre on biological diversity. Nature Conservation Agency of the Czech Republic, PragueGoogle Scholar
  32. Jackson ST, Sax DF (2010) Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. Trends Ecol Evol 25:153–160. doi: 10.1016/j.tree.2009.10.001 CrossRefPubMedGoogle Scholar
  33. Johansson LJ, Hall K, Prentice HC, Ihse M, Reitalu T, Sykes MT, Kindström M (2008) Semi-natural grassland continuity, long-term land-use change and plant species richness in an agricultural landscape on Öland, Sweden. Landsc Urban Plan 84:200–211. doi: 10.1016/j.landurbplan.2007.08.001 CrossRefGoogle Scholar
  34. Kahmen S, Poschlod P, Schreiber KF (2002) Conservation management of calcareous grasslands. Changes in plant species composition and response of functional traits during 25 years. Biol Conserv 104:319–328. doi: 10.1016/S0006-3207(01)00197-5 CrossRefGoogle Scholar
  35. Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: r tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464. doi: 10.1093/bioinformatics/btq166 CrossRefPubMedGoogle Scholar
  36. Kleyer M, Bekker RM, Knevel IC, Bakker JP, Thompson K, Sonnenschein M, Poschlod P, Van Groenendael JM, Klimeš L, Klimešová J, Klotz S, Rusch GM, Hermy M, Adriaens D, Boedeltje G, Bossuyt B, Dannemann A, Endels P, Götzenberger L, Hodgson JG, Jackel AK, Kühn I, Kunzmann D, Ozinga WA, Römermann C, Stadler M, Schlegelmilch J, Steendam HJ, Tackenberg O, Wilmann B, Cornelissen JHC, Eriksson O, Garnier E, Peco B (2008) The LEDA Traitbase: a database of life-history traits of the Northwest European flora. J Ecol 96:1266–1274. doi: 10.1111/j.1365-2745.2008.01430.x CrossRefGoogle Scholar
  37. Klotz S, Kühn I, Durka W (2002) BIOLFLOR—Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland.—Schriftenreihe für Vegetationskunde 38, Bundesamt für Naturschutz, BonnGoogle Scholar
  38. Krall H, Kukk T, Kull T, Kuusk V, Muuga G, Oja T, Reier Ü, Sepp S, Zingel H, Tuulik T (2007) Eesti taimede välimääraja (Field guide of Estonian flora). Eesti Loodusfoto, TartuGoogle Scholar
  39. Kukk T, Kull T (2005) Eesti taimede levikuatlas (Atlas of the Estonian flora). Eesti Maaülikooli Põllumajandus- ja Keskkonnainstituut, TartuGoogle Scholar
  40. Kuussaari M, Bommarco R, Heikkinen RK, Helm A, Krauss J, Lindborg R, Öckinger E, Pärtel M, Pino J, Rodà F, Stefanescu C, Teder T, Zobel M, Steffan-Dewenter I (2009) Extinction debt: a challenge for biodiversity conservation. Trends Ecol Evol 24:564–571. doi: 10.1016/j.tree.2009.04.011 CrossRefPubMedGoogle Scholar
  41. Laasimer L (1965) Eesti NSV taimkate (Flora of the Estonian SSR). Valgus, TallinnGoogle Scholar
  42. Laliberté E, Legendre P, Shipley B (2014) FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0–12Google Scholar
  43. Lewis RJ, Szava-Kovats R, Pärtel M (2015) Estimating dark diversity and species pools: an empirical assessment of two methods. Methods Ecol Evol. doi: 10.1111/2041-210X.12443 Google Scholar
  44. Lindborg R, Helm A, Bommarco R, Heikkinen RK, Kühn I, Pykälä J, Pärtel M (2012) Effect of habitat area and isolation on plant trait distribution in European forests and grasslands. Ecography 35:356–363. doi: 10.1111/j.1600-0587.2011.07286.x CrossRefGoogle Scholar
  45. Louault F, Pillar VD, Aufrère J, Garnier E, Soussana JF (2005) Plant traits and functional types in response to reduced disturbance in a semi-natural grassland. J Veg Sci 16:151–160. doi: 10.1658/1100-9233(2005)016[0151:PTAFTI]2.0.CO;2 CrossRefGoogle Scholar
  46. Marini L, Bruun HH, Heikkinen RK, Helm A, Honnay O, Krauss J, Kühn I, Lindborg R, Pärtel M, Bommarco R (2012) Traits related to species persistence and dispersal explain changes in plant communities subjected to habitat loss. Divers Distrib 18:898–908. doi: 10.1111/j.1472-4642.2012.00893.x CrossRefGoogle Scholar
  47. Mason NWH, de Bello F (2013) Functional diversity: a tool for answering challenging ecological questions. J Veg Sci 24:777–780. doi: 10.1111/jvs.12097 CrossRefGoogle Scholar
  48. Mayfield MM, Levine JM (2010) Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol Lett 13:1085–1093. doi: 10.1111/j.1461-0248.2010.01509.x CrossRefPubMedGoogle Scholar
  49. McCune JL, Vellend M (2015) Using plant traits to predict the sensitivity of colonizations and extirpations to landscape context. Oecologia 178:511–524. doi: 10.1007/s00442-014-3217-y CrossRefPubMedGoogle Scholar
  50. McKinney ML, Lockwood JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14:450–453. doi: 10.1016/S0169-5347(99)01679-1 CrossRefPubMedGoogle Scholar
  51. Morlon H, Schwilk DW, Bryant JA, Marquet PA, Rebelo AG, Tauss C, Bohannan BJM, Green JL (2011) Spatial patterns of phylogenetic diversity. Ecol Lett 14:141–149. doi: 10.1111/j.1461-0248.2010.01563.x CrossRefPubMedPubMedCentralGoogle Scholar
  52. Murcia C, Aronson J, Kattan GH, Moreno-Mateos D, Dixon K, Simberloff D (2014) A critique of the “novel ecosystem” concept. Trends Ecol Evol 29:548–553. doi: 10.1016/j.tree.2014.07.006 CrossRefPubMedGoogle Scholar
  53. Newton I (2004) The recent declines of farmland bird populations in Britain: an appraisal of causal factors and conservation actions. Ibis 146:579–600. doi: 10.1111/j.1474-919X.2004.00375.x CrossRefGoogle Scholar
  54. Newton AC, Walls RM, Golicher D, Keith SA, Diaz A, Bullock JM (2012) Structure, composition and dynamics of a calcareous grassland metacommunity over a 70-year interval. J Ecol 100:196–209. doi: 10.1111/j.1365-2745.2011.01923.x CrossRefGoogle Scholar
  55. Öckinger E, Smith HG (2006) Landscape composition and habitat area affects butterfly species richness in semi-natural grasslands. Oecologia 149:526–534. doi: 10.1007/s00442-006-0464-6 CrossRefPubMedGoogle Scholar
  56. Online Atlas of the British and Irish flora. http://www.brc.ac.uk/plantatlas. Accessed 14 April 2014
  57. Ozinga WA, Römermann C, Bekker RM, Prinzing A, Tamis WLM, Schaminée JHJ, Hennekens SM, Thompson K, Poschlod P, Kleyer M, Bakker JP, van Groenendael JM (2009) Dispersal failure contributes to plant losses in NW Europe. Ecol Lett 12:66–74. doi: 10.1111/j.1461-0248.2008.01261.x CrossRefPubMedGoogle Scholar
  58. Paal J (1997) Eesti taimkatte kasvukohatüüpide klassifikatsioon (Classification of Estonian vegetation site types). Tartu Ülikooli Botaanika ja Ökoloogia Instituut, TallinnGoogle Scholar
  59. Pakeman RJ, Lepš J, Kleyer M, Lavorel S, Garnie E (2009) Relative climatic, edaphic and management controls of plant functional trait signatures. J Veg Sci 20:148–159. doi: 10.1111/j.1654-1103.2009.05548.x CrossRefGoogle Scholar
  60. Pärtel M (2014) Community ecology of absent species: hidden and dark diversity. J Veg Sci 25:1154–1159. doi: 10.1111/jvs.12169 CrossRefGoogle Scholar
  61. Pärtel M, Kalamees R, Zobel M, Rosén E (1999) Alvar grasslands in Estonia: variation in species composition and community structure. J Veg Sci 10:561–570. doi: 10.2307/3237190 CrossRefGoogle Scholar
  62. Pärtel M, Szava-Kovats R, Zobel M (2011) Dark diversity: shedding light on absent species. Trends Ecol Evol 26:124–128. doi: 10.1016/j.tree.2010.12.004 CrossRefPubMedGoogle Scholar
  63. Pavoine S, Bonsall MB (2011) Measuring biodiversity to explain community assembly: a unified approach. Biol Rev 86:792–812. doi: 10.1111/j.1469-185X.2010.00171.x CrossRefPubMedGoogle Scholar
  64. Petit S, Elbersen B (2006) Assessing the risk of impact of farming intensification on calcareous grasslands in Europe: a quantitative implementation of the MIRABEL framework. Ambio 35:297–303CrossRefPubMedGoogle Scholar
  65. Podani J (1999) Extending Gower’s general coefficient of similarity to ordinal characters. Taxon 48:331–340. doi: 10.2307/1224438 CrossRefGoogle Scholar
  66. Proulx M, Mazumder A (1998) Reversal of grazing impact on plant species richness in nutrient-poor vs. nutrient rich ecosystems. Ecology 79:2581–2592. doi: 10.1890/0012-9658(1998)079[2581:ROGIOP]2.0.CO;2 CrossRefGoogle Scholar
  67. Pykälä J (2005) Cattle grazing increases plant species richness of most species trait groups in mesic semi-natural grasslands. Plant Ecol 175:217–226. doi: 10.1007/s11258-005-0015-y CrossRefGoogle Scholar
  68. Quétier F, Thébault A, Lavorel S (2007) Plant traits in a state and transition framework as markers of ecosystem response to land-use change. Ecol Monogr 77:33–52. doi: 10.1890/06-0054 CrossRefGoogle Scholar
  69. R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  70. Riibak K, Reitalu T, Tamme R, Helm A, Gerhold P, Znamenskiy S, Bengtsson K, Rosén E, Prentice HC, Pärtel M (2014) Dark diversity in dry calcareous grasslands is determined by dispersal ability and stress-tolerance. Ecography 38:713–721. doi: 10.1111/ecog.01312 CrossRefGoogle Scholar
  71. Rosén E (1982) Vegetation development and sheep grazing in limestone grasslands of south Öland, Sweden. Acta Phytogeogr Suec 72:1–104Google Scholar
  72. Rosén E (1995) Periodic droughts and long-term dynamics of alvar grassland vegetation on Öland, Sweden. Folia Geobot Phytotax 30:131–140CrossRefGoogle Scholar
  73. Royal Botanic Gardens (2005) Kew bibliographic database. http://data.kew.org/sid/. Accessed 24 April 2014
  74. Saar L, Takkis K, Pärtel M, Helm A (2012) Which plant traits predict species loss in calcareous grasslands with extinction debt? Divers Distrib 18:808–817. doi: 10.1111/j.1472-4642.2012.00885.x CrossRefGoogle Scholar
  75. Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774. doi: 10.1126/science.287.5459.1770 CrossRefPubMedGoogle Scholar
  76. Sax DF, Gaines SD (2008) Colloquium paper: species invasions and extinction: the future of native biodiversity on islands. Proc Natl Acad Sci USA 105:11490–11497. doi: 10.1073/pnas.0802290105 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Schultz NL, Morgan JW, Lunt ID (2011) Effects of grazing exclusion on plant species richness and phytomass accumulation vary across a regional productivity gradient. J Veg Sci 22:130–142. doi: 10.1111/j.1654-1103.2010.01235.x CrossRefGoogle Scholar
  78. Stohlgren TJ, Barnett DT, Jarnevich CS, Flather C, Kartesz J (2008) The myth of plant species saturation. Ecol Lett 11:313–322. doi: 10.1111/j.1461-0248.2008.01153.x CrossRefPubMedGoogle Scholar
  79. Tilman D, May RM, Lehman CL, Nowak MA (1994) Habitat destruction and the extinction debt. Nature 371:65–66. doi: 10.1038/371065a0 CrossRefGoogle Scholar
  80. Timmermann A, Damgaard C, Strandberg MT, Svenning J-C (2015) Pervasive early 21st-century vegetation changes across Danish semi-natural ecosystems: more losers than winners and a shift towards competitive, tall-growing species. J Appl Ecol 52:21–30. doi: 10.1111/1365-2664.12374 CrossRefGoogle Scholar
  81. Valéry L, Fritz H, Lefeuvre J-C, Simberloff D (2009) Invasive species can also be native. Trends Ecol Evol 24:584–585. doi: 10.1016/j.tree.2009.06.017 CrossRefGoogle Scholar
  82. Vandewalle M, Purschke O, de Bello F, Reitalu T, Prentice HC, Lavorel S, Johansson LJ, Sykes MT (2014) Functional responses of plant communities to management, landscape and historical factors in semi-natural grasslands. J Veg Sci 25:750–759. doi: 10.1111/jvs.12126 CrossRefGoogle Scholar
  83. Vilberg G (1927) Loost ja lootaimkattest Ida-Harjumaal (Die Alvare und die Alvar Vegetation in Ost-Harrien). Annls Soc Rer Nat Invest Univ Tartu 34:1–131Google Scholar
  84. Walker KJ, Preston CD (2006) Ecological predictors of extinction risk in the flora of lowland England, UK. Biodivers Conserv 15:1913–1942. doi: 10.1007/s10531-005-4313-4 CrossRefGoogle Scholar
  85. Wesche K, Krause B, Culmsee H, Leuschner C (2012) Fifty years of change in Central European grassland vegetation: large losses in species richness and animal-pollinated plants. Biol Conserv 150:76–85. doi: 10.1016/j.biocon.2012.02.015 CrossRefGoogle Scholar
  86. Wilson JB, Peet RK, Dengler J, Pärtel M (2012) Plant species richness: the world records. J Veg Sci 23:796–802. doi: 10.1111/j.1654-1103.2012.01400.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Botany, Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
  2. 2.Institute of BotanyCzech Academy of SciencesTřeboňCzech Republic
  3. 3.Department of Botany, Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic

Personalised recommendations