Advertisement

Biodiversity and Conservation

, Volume 25, Issue 12, pp 2197–2231 | Cite as

The Palaearctic steppe biome: a new synthesis

  • Karsten Wesche
  • Didem Ambarlı
  • Johannes Kamp
  • Peter Török
  • Jan Treiber
  • Jürgen Dengler
Original Paper

Abstract

The Palaearctic steppes range from the Mediterranean basin towards China, forming one of the largest continuous terrestrial biomes. The literature on steppe ecology and conservation is vast but scattered and often not available in English. We provide a review of some key topics based on a new definition of steppes, which includes also Mediterranean steppes and alpine rangelands of the Asian Highlands. Revisiting the terrestrial ecoregions of the world, we estimate that the Palaearctic steppe biome extends over ca. 10.5 million km2. Major chorological regions differ in their macroclimatic niche with a clear distinction between Middle Asia with its winter precipitation and the Central Asian summer-rain regions of the Mongolian plateau and of Tibet. Steppe soils store large amounts of carbon, yet the sequestration potential is debated and depends on land use. Major physiognomic-ecological steppe types include forest-, typical-, desert-, and alpine-steppe, which vary in the importance of grasses, mainly C3 species. The steppes host a specialised fauna, and Middle Asia, Tibet, and especially Mongolia, have large herds of migrating ungulates. The share of pristine and protected sites is low in the steppe regions, with conversion into croplands being the most important land use impact in Europe, Middle Asia, and the Mediterranean, while grazing has a severe impact in some parts of Mongolia and Tibet. There are major gaps in our knowledge on: (1) the effects of climate change on the crucial seasonal patterns; (2) the role of steppe soils in the global carbon budget; and (3) the ecology and distribution of most animal groups except vertebrates.

Keywords

Biogeography Climate change Grazing Palaearctic Protected area Steppe biome 

Abbreviations

BP

Years before present

cal BP

Calibrated years before present

QR

Range between quartiles

s.lat.

Sensu lato (in the wide sense)

s.str.

Sensu stricto (in the narrow sense)

TEOWs

Terrestrial ecoregions of the world (Olson et al. 2001)

Notes

Acknowledgments

Our sincere thanks go to David Hawksworth for giving us the opportunity to put together an exciting special issue and for his patience during the process. He also provided very helpful comments on an earlier version of this paper. We thank Aiko Huckauf for polishing our English and Milan Chytrý, Olga Demina, Wanja Mathar, Alireza Naqinezhad, Jens Oldeland, Mustafa Sözen and Yun Wang for providing photos. K.W. extends special thanks to Tatiana Bragina and Ilya Smelyanski from the IUCN Specialist Group on Holarctic steppes; his work feeding into this paper was partly financed by the German Research Foundation (DFG), by the German Federal Ministry of Education and Research (BMBF: CAME-PaDeMoS and GLUES-Kulunda initiatives) and by the International Fund for Agricultural Development. J.K. was funded by the BMBF within their Sustainable Land Management funding framework (Project SASCHA, funding reference 01LL0906A) and by the Volkswagen Foundation (funding reference A112025).

Authors contribution

This synthesis was coordinated by K.W. and J.D., with K.W. drafting the majority of sections and preparing the maps together with J.T, while J.D. contributed the sections on steppe definition and subdivision. Regional aspects were mainly contributed by P.T. and J.D. for the European region, J.K. for the Middle Asian region, K.W. and J.T. for the Mongolian and Tibetan regions and D.A. and J.D. for the Mediterranean region. All authors critically revised the whole manuscript.

Supplementary material

10531_2016_1214_MOESM1_ESM.pdf (7.8 mb)
Supplementary material 1 (PDF 8001 kb)
10531_2016_1214_MOESM2_ESM.pdf (55 kb)
Supplementary material 2 (PDF 56 kb)
10531_2016_1214_MOESM3_ESM.pdf (276 kb)
Supplementary material 3 (PDF 276 kb)
10531_2016_1214_MOESM4_ESM.pdf (205 kb)
Supplementary material 4 (PDF 206 kb)
10531_2016_1214_MOESM5_ESM.pdf (316 kb)
Supplementary material 5 (PDF 317 kb)
10531_2016_1214_MOESM6_ESM.pdf (20 kb)
Supplementary material 6 (PDF 21 kb)
10531_2016_1214_MOESM7_ESM.pdf (62 kb)
Supplementary material 7 (PDF 63 kb)
10531_2016_1214_MOESM8_ESM.pdf (18 kb)
Supplementary material 8 (PDF 19 kb)

References

  1. Acton DF (1992) Grassland soils. In: Coupland RT (ed) Ecosystems of the world 8A: natural grasslands: introduction and Western Hemisphere. Elsevier, Amsterdam, pp 25–54Google Scholar
  2. Adak MS, Kendir H, Birsin Avcı M (2005) Tarımsal kullanımda çayır ve meraların yeri ve Türkiye’deki genel durumun değerlendirilmesi raporu. WWF Türkiye, AnkaraGoogle Scholar
  3. Addison J, Greiner R (2016) Applying the social–ecological systems framework to the evaluation and design of payment for ecosystem service schemes in the Eurasian steppe. Biodivers Conserv. doi: 10.1007/s10531-015-1016-3 Google Scholar
  4. Addison J, Friedel M, Brown C, Davies J, Waldron S (2012) A critical review of degradation assumptions applied to Mongolia’s Gobi Desert. Rangel J 34:125–137CrossRefGoogle Scholar
  5. Aires LMI, Pio CA, Pereira JS (2008) Carbon dioxide exchange over a Mediterranean C3/C4 grassland during two climatically contrasting years. Grass Forage Sci 14:539–555Google Scholar
  6. Akasbi Z, Oldeland J, Dengler J, Finckh M (2012) Social and ecological constraints on decision making by transhumant pastoralists: a case study from the Moroccan Atlas Mountains. J Mt Sci 9:307–321CrossRefGoogle Scholar
  7. Akhani H, Mahdavi P, Noroozi J, Zarrinpour V (2013) Vegetation patterns of the Irano-Turanian steppe along a 3,000 m altitudinal gradient in the Alborz Mountains of Northern Iran. Folia Geobot 48:229–255CrossRefGoogle Scholar
  8. Alcantara C, Kuemmerle T, Baumann M et al (2013) Mapping the extent of abandoned farmland in Central and Eastern Europe using MODIS time series satellite data. Environ Res Lett 8:035035CrossRefGoogle Scholar
  9. Allington GRH, Valone TJ (2014) Islands of fertility: a byproduct of grazing? Ecosystems 17:127–141CrossRefGoogle Scholar
  10. Ambarlı D, Bilgin CC (2014) Effects of landscape, land use and vegetation on bird community composition and diversity in inner Anatolian steppes. Agric Ecosyst Environ 182:37–46CrossRefGoogle Scholar
  11. Ambarlı D, Zeydanlı US, Balkız Ö et al (2016) An overview of biodiversity and conservation status of steppes of the Anatolian Biogeographical Region. Biodivers Conserv. doi: 10.1007/s10531-016-1172-0 Google Scholar
  12. Astana Times (2014) Effort begins to revive endangered Przewalski Horse population in Kazakhstan. http://www.astanatimescom/2014/11/effort-begins-revive-endangered-przewalski-horse-population-kazakhstan/
  13. Atamov VV (2002) Azerbaycan’ın bozkir vejetasyonunun fitocoğrafik bölgeleri. Ot Sist Bot Derg 9(2):101–116Google Scholar
  14. Auerswald K, Wittmer MHOM, Bai YF et al (2012) C4 abundance in an Inner Mongolia grassland system is driven by temperature-moisture interaction not grazing pressure. Basic Appl Ecol 13:67–75CrossRefGoogle Scholar
  15. Austin AT (2011) Has water limited our imagination for aridland biogeochemistry? Trends Ecol Evol 26:229–235PubMedCrossRefGoogle Scholar
  16. Bagchi S, Ritchie M (2010) Herbivore effects on above- and belowground plant production and soil nitrogen availability in the Trans-Himalayan shrub-steppes. Oecologia 164:1075–1082PubMedCrossRefGoogle Scholar
  17. Barkoudah Y, Darwish A, Antoun M (2000) Biological diversity: national report. Biodiversity Unit, Syrian Arab Republic Ministry of Environment. https://www.cbd.int/doc/world/sy/sy-nr-01-en.pdf. Accessed 09 June 2016
  18. Batsaikhan N, Buuveibaatar B, Chimed B et al (2014) Conserving the world’s finest grassland amidst ambitious national development. Conserv Biol 28:1736–1739PubMedCrossRefGoogle Scholar
  19. Baumbach H, Pfützenreuter S (eds) (2013) Steppenlebensräume Europas—Gefährdung, Erhaltungsmaßnahmen und Schutz. Thüringer Ministerium für, Landwirtschaft, Forsten, Umwelt und Naturschutz, ErfurtGoogle Scholar
  20. Bedunah D, Harris RB (2002) Past, present & future: rangelands in China. Rangel Arch 24:17–22Google Scholar
  21. Berger J, Buuveibaatar B, Mishra C (2013) Globalization of the cashmere market and the decline of large mammals in Central Asia. Conserv Biol 27:679–689PubMedCrossRefGoogle Scholar
  22. Bohn U, Gollub G, Hettwer C et al (eds) (2003) Karte der natürlichen Vegetation Europas–Maßstab 1: 2 500 000—Erläuterungstext. Bundesamt für Naturschutz, BonnGoogle Scholar
  23. Bone M, Johnson DA, Kelaidis P, Kintgen M, Vickerman LG (2015) Steppes: the plants and ecology of the world’s semi-arid regions. Timber, PortlandGoogle Scholar
  24. Breckle SW, Dittmann MD, Rafiqpoor MD (2010) Field guide Afghanistan. Scientia Bonnensis Gustav-Stresemann-Institut, BonnGoogle Scholar
  25. Brinkert A, Hölzel N, Sidorova T, Kamp J (2016) Spontaneous steppe restoration on abandoned cropland in Kazakhstan: grazing determines successional pathways. Biodivers Conserv. doi: 10.1007/s10531-015-1020-7 Google Scholar
  26. Brogaard S, Li X (2006) Agricultural performance on marginal land in Eastern Inner Mongolia, China: development in the pre- and post-1978 reform periods. GeoJournal 64(3):163–175CrossRefGoogle Scholar
  27. Cannon PF, Hywel-Jones NL, Maczey N et al (2009) Steps towards sustainable harvest of Ophiocordyceps sinensis in Bhutan. Biodivers Conserv 18:2263–2281CrossRefGoogle Scholar
  28. Cao J, Holden NM, Lü XT, Du G (2011) The effect of grazing management on plant species richness on the Qinghai-Tibetan Plateau. Grass Forage Sci 66:333–336CrossRefGoogle Scholar
  29. Chen H, Zhu Q, Peng C et al (2013a) The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Glob Chang Biol 19:2940–2955PubMedCrossRefGoogle Scholar
  30. Chen X, Bai J, Li X et al (2013b) Changes in land use/land cover and ecosystem services in Central Asia during 1990–2009. Curr Opin Environ Sustain 5:116–127CrossRefGoogle Scholar
  31. Chen FH, Dong GH, Zhang DJ et al (2015a) Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 B.P. Science 347:248–250PubMedCrossRefGoogle Scholar
  32. Chen X, An S, Inouye DW, Schwartz MD (2015b) Temperature and snowfall trigger alpine vegetation green-up on the world’s roof. Glob Chang Biol 21:3635–3646PubMedCrossRefGoogle Scholar
  33. Clark FE, Woodmansee RG (1992) Nutrient cycling. In: Coupland RT (ed) Natural grasslands ecosystems of the world, vol 8A. Elsevier, Amsterdam, pp 137–149Google Scholar
  34. Conte TJ, Tilt B (2014) The effects of China’s grassland contract policy on pastoralists’ attitudes towards cooperation in an Inner Mongolian banner. Hum Ecol 42:837–846CrossRefGoogle Scholar
  35. Coupland RT (1993) Overview of the grasslands of Europa and Asia. In: Coupland RT (ed) Ecosystems of the world: Eastern Hemisphere and résumé, vol 8B. Elsevier, Amsterdam, pp 1–2Google Scholar
  36. Cressey GB (1960) The deserts of Asia. J Asian Stud 19:389–402CrossRefGoogle Scholar
  37. Critical Ecosystem Partnership Fund (2004) Caucasus biodiversity hotspot: ecosystem profile. Final version 2003. Critical ecosystem partnership fund http://www.cepf.net/where_we_work/regions/europe_central_asia/caucasus/ecosystem_profile/Pages/default.aspx. Accessed 08 Jun 2016
  38. Cui X, Graf H-F (2009) Recent land cover changes on the Tibetan Plateau: a review. Clim Chang 94:47CrossRefGoogle Scholar
  39. Czúcz B, Gálhidy L, Mátyás C (2011) Present and forecasted xeric climatic limits of beech and sessile oak distribution at low altitudes in Central Europe. Ann For Sci 68:99–108CrossRefGoogle Scholar
  40. Dagvadorj D, Khuldorj B, Aldover RZ (eds) (2009) Mongolia assessment report on climate change 2009. Ministry of Nature, Environment and Tourism, UlaanbaatarGoogle Scholar
  41. Davidson AD, Detling JK, Brown JH (2012) Ecological roles and conservation challenges of social, burrowing, herbivorous mammals in the world’s grasslands. Front Ecol Environ 10:477–486CrossRefGoogle Scholar
  42. De Beurs K, Wright C, Henebry G (2009) Dual scale trend analysis for evaluating climatic and anthropogenic effects on the vegetated land surface in Russia and Kazakhstan. Environ Res Lett 4:045012CrossRefGoogle Scholar
  43. Deák B, Tóthmérész B, Valkó O et al (2016) Cultural monuments and nature conservation: a review of the role of kurgans in the conservation and restoration of steppe vegetation. Biodivers Conserv. doi: 10.1007/s10531-016-1081-2 Google Scholar
  44. Degefie DT, Fleischer E, Klemm O et al (2014) Climate extremes in South Western Siberia: past and future. Stoch Environ Res Risk Assess 28:2161–2173CrossRefGoogle Scholar
  45. Deng L, Yan W, Zhang Y, Shangguan Z (2016) Severe depletion of soil moisture following land-use changes for ecological restoration: evidence from northern China. For Ecol Manag 366:1–10CrossRefGoogle Scholar
  46. Dengler J, Janisova M, Török P, Wellstein C (2014) Biodiversity of Palaearctic grasslands: a synthesis. Agric Ecosyst Environ 182:1–14CrossRefGoogle Scholar
  47. Dixon AP, Faber-Langendoen D, Josse C et al (2014) Distribution mapping of world grassland types. J Biogeogr 41:2003–2019CrossRefGoogle Scholar
  48. Djamali M, Brewer S, Breckle SW, Jackson ST (2012) Climatic determinism in phytogeographic regionalization: a test from the Irano-Turanian region, SW and Central Asia. Flora 207:237–249CrossRefGoogle Scholar
  49. Dorji T, Totland Ø, Moe SR et al (2013) Plant functional traits mediate reproductive phenology and success in response to experimental warming and snow addition in Tibet. Glob Chang Biol 19:459–472PubMedCrossRefGoogle Scholar
  50. Dubinin M, Potapov P, Lushchekina A, Radeloff VC (2010) Reconstructing long time series of burned areas in arid grasslands of southern Russia by satellite remote sensing. Remote Sens Environ 114:1638–1648CrossRefGoogle Scholar
  51. Dubinin M, Luschekina A, Radeloff VC (2011) Climate, livestock, and vegetation: what drives fire increase in the arid ecosystems of Southern Russia? Ecosystems 14:547–562CrossRefGoogle Scholar
  52. Dumont B, Andueza D, Niderkorn V et al (2015) A meta-analysis of climate change effects on forage quality in grasslands: perspectives in mountains and Mediterranean areas. Grass Forage Sci 70:239–254CrossRefGoogle Scholar
  53. Durgin JR, Frank A (1962) The Virgin lands programme 1954–1960. Europe 13:255–280Google Scholar
  54. Eckert S, Hüsler F, Liniger H, Hodel E (2015) Trend analysis of MODIS NDVI time series for detecting land degradation and regeneration in Mongolia. J Arid Environ 113:16–28CrossRefGoogle Scholar
  55. Edgell HS (2006) Arabian deserts: nature, origin and evolution. Springer, DordrechtCrossRefGoogle Scholar
  56. Eliáš PJ, Sopotlieva D, Ditě D et al (2013) Vegetation diversity of salt-rich grasslands in Southeast Europe. Appl Veg Sci 16:521–537CrossRefGoogle Scholar
  57. Ellis JE, Price K, Boone R et al (2002) Integrated assessment of climate change effects on vegetetation in Mongolia and inner Mongolia. In: Chuluun T, Ojima D (eds) Fundamental issues affecting sustainability of the Mongolian steppe. IISCN, Ulaanbataar, pp 26–33Google Scholar
  58. Elser JJ, Bracken MES, Cleland EE et al (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142PubMedCrossRefGoogle Scholar
  59. Ermakov N, Chytrý M, Valachovič M (2006) Vegetation of the rock outcrops and screes in the forest-steppe and steppe belts of the Altai and Western Sayan Mts., southern Siberia. Phytocoenologia 36:509–545CrossRefGoogle Scholar
  60. Ermakov N, Larionov AV, Polyakova MA (2012) The syntaxa of the meadow steppes of Helictotrichetalia schelliani from the Altai and Khakasia. Vestnik NGU Sib Biol Klin Med 10:16–23 (in Russian)Google Scholar
  61. Farahpour M, van Keulen H, Sharifi MA, Bassiri M (2004) A planning support system for rangeland allocation in Iran with case study of Chadegan sub-region. Rangel J 26:225–236CrossRefGoogle Scholar
  62. Fernandez-Gimenez ME (1999) Sustaining the steppes: a geographical history of pastoral land use in Mongolia. Geogr Rev 89:315–342CrossRefGoogle Scholar
  63. Fernandez-Gimenez ME, Allen-Diaz B (1999) Testing a non-equilibrium model of rangeland vegetation dynamics in Mongolia. J Appl Ecol 36:871–885CrossRefGoogle Scholar
  64. Fet V, Atamuradov K (2012) Biogeography and ecology of Turkmenistan. Springer, HeidelbergGoogle Scholar
  65. Finckh M, Poete P (1987) Vegetation map of the Drâa basin. In: Schulz O, Judex M (eds) IMPETUS Atlas Morocco. Research results 2000–2007. University of Bonn, Bonn, pp 31–32Google Scholar
  66. Fischer M, Wipf S (2002) Effect of low-intensity grazing on the species-rich vegetation of traditionally mown subalpine meadows. Biol Conserv 104:1–11CrossRefGoogle Scholar
  67. Fox JF, Dorji T (2009) Traditional hunting of Tibetan Antelope, its relation to antelope migration, and its rapid transformation in the Western Chang Tang Nature Reserve. Arct Antarct Alp Res 41:204–211CrossRefGoogle Scholar
  68. Fox JF, Dhondup K, Dorji T (2009) Tibetan antelope Pantholops hodgonsonii conservation and new rangeland management policies in the western Chang Tang Nature Reserve, Tibet Autonomous Region, China—is fencing creating an impasse? Oryx 43:183–190CrossRefGoogle Scholar
  69. Franklin SB, Hunter JT, De Cáceres M et al (2016) Introducing the IAVS vegetation classification working group. Phytocoenologia 46:5−8CrossRefGoogle Scholar
  70. Frey W, Probst W (1986) A synopsis of the vegetation of Iran. In: Kürschner H (ed) Contributions to the vegetation of southwest Asia. Ludwig Reicher, Wiesbaden, pp 9–44Google Scholar
  71. Fu Y, Zheng Z, Yu G et al (2009) Environmental influences on carbon dioxide fluxes over three grassland ecosystems in China. Biogeosciences 6:2879–2893CrossRefGoogle Scholar
  72. Gao W, Angerer JP, Fernandez-Gimenez M, Reid RS (2015) Is overgrazing a pervasive problem across Mongolia? An examination of livestock forage demand and forage availability from 2000 to 2014. In: Fernandez-Gimenez M, Batkhishig B, Fassnacht S, Wilson D (eds) Proceedings of building resilience of Mongolian rangelands. A trans-disciplinary research conference. Nutag Action and Research Institute, Ulaanbaatar, pp 35–41Google Scholar
  73. Geerken R, Zaitchik B, Evans JP (2005) Classifying rangeland vegetation type and coverage from NDVI time series using Fourier filtered cycle similarity. Int J Remote Sens 26:5535–5554CrossRefGoogle Scholar
  74. Global Carex Group (2015) Making Carex monophyletic (Cyperaceae, tribe Cariceae): a new broader circumscription. Bot J Linn Soc 179:1–42CrossRefGoogle Scholar
  75. Gong X, Chen Q, Dittert K et al (2011) Nitrogen, phosphorus and potassium nutritional status of semiarid steppe grassland in Inner Mongolia. Plant Soil 340:265–278CrossRefGoogle Scholar
  76. Grubov VI (2010) Schlussbetrachtung zum Florenwerk “Rasteniya Central’noj Azii” (Die Pflanzen Zentralsiens) und die Begründung der Eigenständigkeit der mongolischen Flora. Feddes Repert 121:7–13CrossRefGoogle Scholar
  77. Gunin PD, Slemnev NN, Tsoog S (2003) Seed regeneration of dominant plants in ecosystems of the desert zone of Mongolia: dynamics of undergrowth populations. Bot Zurnal 88:1–17Google Scholar
  78. Guo Q, Hu Z, Li S et al (2012) Spatial variations in aboveground net primary productivity along a climate gradient in Eurasian temperate grassland: effects of mean annual precipitation and its seasonal distribution. Glob Chang Biol 18:3624–3631CrossRefGoogle Scholar
  79. Guoying Y, Weidong L, Hongxu L et al (2002) Distribution and number of the wild bactrian camels in the world. In: Reading R, Dulamtserengiin E, Tuvdendorjiin G (eds) Ecology and conservation of Wild bactrian camels. Mongolian Conservation Coalition, Ulaanbaatar, pp 13–24Google Scholar
  80. Habel JC, Dengler J, Janišová M et al (2013) European grassland ecosystems: threatened hotspots of biodiversity. Biodivers Conserv 22:2131–2138CrossRefGoogle Scholar
  81. Hafner S, Unteregelsbacher S, Seeber E et al (2011) Effect of grazing on carbon stocks and assimilate partitioning in a Tibetan montane pasture revealed by 13CO2 pulse labeling. Glob Chang Biol 18:528–538CrossRefGoogle Scholar
  82. Hamasha HN, von Hagen B, Röser M (2012) Stipa (Poaceae) and allies in the Old World: molecular phylogenetics realigns genus circumscription and gives evidence on the origin of American and Australian lineages. Plant Syst Evol 298:351–367CrossRefGoogle Scholar
  83. Han Q, Luo G, Li C et al (2016) Simulated grazing effects on carbon emission in Central Asia. Agric For Meteorol 216:203–214CrossRefGoogle Scholar
  84. Hao A, Nakano Y, Yuge K, Haraguchi T (2005) Effectivenenss of environmental restoration induced by various trials for preventing desertification in Horqin arid land, China: straw net method (part 1). J Fac Agric Kyushu Univ 50:223–232Google Scholar
  85. Hao L, Sun G, Liu Y et al (2014) Effects of precipitation on grassland ecosystem restoration under grazing exclusion in Inner Mongolia, China. Landsc Ecol 29:1657–1673CrossRefGoogle Scholar
  86. Harris RB (2010) Rangeland degradation on the Qinghai-Tibetan plateau: a review of the evidence of its magnitude and causes. J Arid Environ 74:1–12CrossRefGoogle Scholar
  87. Heisler-White JL, Blair JM, Kelly EF et al (2009) Contingent productivity responses to more extreme rainfall regimes across a grassland biome. Glob Chang Biol 15:2894–2904CrossRefGoogle Scholar
  88. Hejcman M, Hejcmanová P, Pavlů V, Beneš J (2013) Origin and history of grasslands in Central Europe—a review. Grass Forage Sci 68:345–363CrossRefGoogle Scholar
  89. Henkin PI, Perevolotsky A, Sternberg M (2010) Long-term dominance of annual legumes after P application in a Mediterranean rangeland. Options Méditerr Ser A 45:137–140Google Scholar
  90. Henwood W (1998) The world’s temperate grasslands: a beleaguered biome. Parks 8:1–2Google Scholar
  91. Henwood W (2012) Momentum continues to grow. Temp Grassl Conserv Initiat Newsl 8:1–3Google Scholar
  92. Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  93. Hilbig W (1995) The vegetation of Mongolia. SPB Academic Publishing, AmsterdamGoogle Scholar
  94. Hilker T, Natsagdorj E, Waring RH, Lyapustin A, Wang Y (2014) Satellite observed widespread decline in Mongolian grasslands largely due to overgrazing. Glob Chang Biol 20:418–428PubMedCrossRefGoogle Scholar
  95. Hoekstra JM, Boucher TM, Ricketts TH, Roberts C (2005) Confronting a biome crisis: global disparities of habitat loss and protection. Ecol Lett 8:23–29CrossRefGoogle Scholar
  96. Holst J, Liu C, Yao Z, Brüggemann N et al (2007) Importance of point sources on regional nitrous oxide fluxes in semi-arid steppe of Inner Mongolia, China. Plant Soil 296:209–226CrossRefGoogle Scholar
  97. Hua L, Yang S, Squires VR, Wang G (2015) An alternative rangeland management strategy in an agro-pastoral area in western China. Rangel Ecol Manag 68:1009–1118CrossRefGoogle Scholar
  98. Ingrisch J, Biermann T, Seeber E et al (2015) Carbon pools and fluxes in a Tibetan alpine Kobresia pygmaea pasture partitioned by coupled eddy-covariance measurements and 13CO2 pulse labeling. Sci Total Environ 505:1213–1224PubMedCrossRefGoogle Scholar
  99. IPBES (2016) Summary for policymakers of the assessment report of the Intergovernmental Science - Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food productionGoogle Scholar
  100. IPCC (ed) (2013) Annex I: Atlas of global and regional climate projection. Climate change 2013: the physical science basis contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  101. IPCC (ed) (2014a) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  102. IPCC (ed) (2014b) Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  103. Janzen J (2005) Mobile livestock-keeping in Mongolia: present problems, spatial organization, interaction between mobile and sedentary population groups and perspectives for pastoral development. Senri Ethnol Stud 69:69–97Google Scholar
  104. Jiang L, Han X, Zhang G, Kardol P (2010) The role of plant–soil feedbacks and land-use legacies in restoration of a temperate steppe in northern China. Ecol Res 25:1101CrossRefGoogle Scholar
  105. John R, Chen J, Lu N, Wilske B (2009) Land cover/land use change in semi-arid inner Mongolia: 1992–2004. Environ Res Lett 4:045010CrossRefGoogle Scholar
  106. Kaczensky P, Ganbaatar O, von Wehrden H, Walzer C (2008) Resource selection by sympatric wild equids in the Mongolian Gobi. J Appl Ecol 45:1762–1769CrossRefGoogle Scholar
  107. Kaczensky P, Adiya Y, von Wehrden H et al (2014) Space and habitat use by wild Bactrian camels in the Transaltai Gobi of southern Mongolia. Biol Conserv 169:311–318PubMedPubMedCentralCrossRefGoogle Scholar
  108. Kaiser K, Miehe G, Barthelmes A et al (2008) Turf-bearing topsoils on the central Tibetan Plateau, China: pedology, botany, geochronology. Catena 3:300–311CrossRefGoogle Scholar
  109. Kamp J (2014) Land management: weighing up reuse of Soviet croplands. Nature 505:483PubMedCrossRefGoogle Scholar
  110. Kamp J, Sheldon RD, Koshkin MA et al (2009) Post-Soviet steppe management causes pronounced synanthropy in the globally threatened sociable lapwing Vanellus gregarius. Ibis 151:452–463CrossRefGoogle Scholar
  111. Kamp J, Urazaliev R, Donald PF, Hölzel N (2011) Post-Soviet agricultural change predicts future declines after recent recovery in Eurasian steppe bird populations. Biol Conserv 144:2607–2614CrossRefGoogle Scholar
  112. Kamp J, Siderova TV, Salemgareev AR et al (2012) Niche separation of larks (Alaudidae) and agricultural change on the drylands of the former Soviet Union. Agric Ecosyst Environ 155:41–49CrossRefGoogle Scholar
  113. Kamp J, Urazaliev R, Balmford A et al (2015) Agricultural development and the conservation of avian biodiversity on the Eurasian steppes: a comparison of land-sparing and land-sharing approaches. J Appl Ecol 52:1578–1587CrossRefGoogle Scholar
  114. Kamp J, Koshkin MA, Bragina TM et al (2016) Persistent and novel threats to the biodiversity of Kazakhstan’s steppes and semi-deserts. Biodivers Conserv. doi: 10.1007/s10531-016-1083-0 Google Scholar
  115. Kämpf I, Hölzel N, Störrle M et al (2016a) Potential of temperate agricultural soils for carbon sequestration: a meta-analysis of land-use effects. Sci Total Environ 566:428–435PubMedCrossRefGoogle Scholar
  116. Kämpf I, Mathar W, Kuzmin I et al (2016b) Post-Soviet recovery of grassland vegetation on abandoned fields in the forest steppe zone of Western Siberia. Biodivers Conserv. doi: 10.1007/s10531-016-1078-x Google Scholar
  117. Kang L, Han X, Zhang Z, Sun OJ (2007) Grassland ecosystems in China: review of current knowledge and research advancement. Philos Trans R Soc B 362:997–1008CrossRefGoogle Scholar
  118. Kaplan S, Blumberg DG, Mamedov E, Orlovsky L (2014) Land-use change and land degradation in Turkmenistan in the post-Soviet era. J Arid Environ 103:96–106CrossRefGoogle Scholar
  119. Karamysheva ZV, Khramtsov VN (1995) The steppes of Mongolia. Braun 17:5–79Google Scholar
  120. Kelemen A, Valkó O, Kröel-Dulay G et al (2016) The invasion of common milkweed (Asclepias syriaca) in sandy old-fields: is it a threat to the native flora? Appl Veg Sci 19:218–224CrossRefGoogle Scholar
  121. Kerven C, Robinson S, Behnke R et al (2016) A pastoral frontier: from chaos to capitalism and the re-colonisation of the Kazakh rangelands. J Arid Environ 127:106–119CrossRefGoogle Scholar
  122. Kier G, Kreft H, Lee TM et al (2009) A global assessment of endemism and species richness across island and mainland regions. Proc Natl Acad Sci USA 106:9322–9327PubMedPubMedCentralCrossRefGoogle Scholar
  123. Kinugasa T, Tsunekawa A, Shinoda M (2012) Increasing nitrogen deposition enhances post-drought recovery of grassland productivity in the Mongolian steppe. Oecologia 170:857–865PubMedCrossRefGoogle Scholar
  124. Klein Tank AMG, Peterson TC, Quadir DA et al (2006) Changes in daily temperature and precipitation extremes in central and south Asia. J Geophys Res 111:D16105CrossRefGoogle Scholar
  125. Klein J, Harte J, Zhao X (2004) Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau. Ecol Lett 7:1170–1179CrossRefGoogle Scholar
  126. Kolahi M, Sakai T, Moriya K, Makhdoum MF (2012) Challenges to the future development of Iran’s protected areas system. Environ Manag 50:750–765CrossRefGoogle Scholar
  127. Korotchenko I, Peregrym M (2012) Ukrainian steppes in the past, at present and in the future. In: Werger MJA, van Staalduinen M (eds) Eurasian Steppes. Ecological problems and livelihoods in a changing world. Springer, Heidelberg, pp 173–196CrossRefGoogle Scholar
  128. Kottek M, Grieser J, Beck C et al (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Z 15:259–263CrossRefGoogle Scholar
  129. Kovács-Láng E, Kröel-Dulay G, Kertész M et al (2000) Changes in the composition of sand grasslands along a climatic gradient in Hungary and implications for climate change. Phytocoenologia 30:385–407CrossRefGoogle Scholar
  130. Kovats RS, Valentini R, Bouwer LM et al (2014) Europe. In: Barros VR et al (eds) Climate change 2014: impacts, adaptation, and vulnerability Part B: regional aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1267–1326Google Scholar
  131. Kraemer R, Prishchepov AV, Müller D et al (2015) Long-term agricultural land-cover change and potential for cropland expansion in the former Virgin lands area of Kazakhstan. Environ Res Lett 10:054012CrossRefGoogle Scholar
  132. Kreutzmann H (2013) The tragedy of responsibility in high Asia: modernizing traditional pastoral practices and preserving modernist worldviews. Pastoralism 3:1–11CrossRefGoogle Scholar
  133. Kühling I, Broll G, Trautz D (2016) Spatio-temporal analysis of agricultural land-use intensity across the Western Siberian grain belt. Sci Total Environ 544:271–280PubMedCrossRefGoogle Scholar
  134. Kurganova I, Lopes de Gerenyu V et al (2014) Carbon cost of collective farming collapse in Russia. Glob Chang Biol 20:938–947PubMedCrossRefGoogle Scholar
  135. Kürschner H (1986) The subalpine thorn-cushion formations of western South Asia: ecology, structure and zonation. Proc R Soc Edinb B 89:169–179Google Scholar
  136. Kuzemko AA, Steinbauer MJ, Becker T et al (2016) Patterns and drivers of phytodiversity of steppe grasslands of Central Podolia (Ukraine). Biodivers Conserv. doi: 10.1007/s10531-016-1060-7 Google Scholar
  137. Lai CH, Smith AT (2003) Keystone status of plateau pikas (Ochotona curzoniae): effect of control on biodiversity of native birds. Biodivers Conserv 12:1901–1912CrossRefGoogle Scholar
  138. Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627PubMedCrossRefGoogle Scholar
  139. Lameris TK, Fijen TP, Urazaliev R et al (2016) Breeding ecology of the endemic Black Lark Melanocorypha yeltoniensis on natural steppe and abandoned croplands in post-Soviet Kazakhstan. Biodivers Conserv. doi: 10.1007/s10531-015-1041-2 Google Scholar
  140. Lauenroth WK (1998) Guanacos, spiny shrubs and the evolutionary history of grazing in the Patagonian steppe. Ecol Austral 8:211–215Google Scholar
  141. Lavrenko EM, Yunatov AA et al (1979) Karta rastitelnosti Mongolskoy Narodnoy Respubliki. Prosveshchenie, MoskvaGoogle Scholar
  142. Lavrenko EM, Karamysheva ZV (1993) Steppes of the former Soviet Union and Mongolia. In: Coupland RT (ed) Ecosystems of the world 8B: natural grasslands: Eastern Hemisphere and résumé. Elsevier, Amsterdam, pp 3–59Google Scholar
  143. Lavrenko EM, Karamysheva ZV, Nikulina RI (1991) Stepi Ewraziij (European steppes). Biologiceskie Resursy i prirodnye Uslovija Mongolskoy Narodnoy Respublike 35:1–144Google Scholar
  144. Lehnert LW, Wesche K, Trachte K et al (2016) Climate variability rather than overstocking causes recent large scale cover changes of Tibetan pastures. Sci Rep 6:24367PubMedPubMedCentralCrossRefGoogle Scholar
  145. Le Houérou HN (2009) Bioclimatology and biogeography of Africa. Springer, BerlinCrossRefGoogle Scholar
  146. Li W, Huntsinger L (2011) China’s grassland contract policy and its impacts on herder ability to benefit in inner Mongolia: tragic feedbacks. Ecol Soc 16:1Google Scholar
  147. Li WJ, Li JH, Knops J et al (2009) Plant communities, soil carbon, and soil nitrogen properties in a successional gradient of sub-alpine meadows on the Eastern Tibetan Plateau of China. Environ Manag 44:755–765CrossRefGoogle Scholar
  148. Li G, Liu Y, Frelich LE, Sun S (2011) Experimental warming induces degradation of a Tibetan alpine meadow through trophic interactions. J Appl Ecol 48:659–667CrossRefGoogle Scholar
  149. Li S, Verburg PH, Lv S et al (2012) Spatial analysis of the driving factors of grassland degradation under conditions of climate change and intensive use in Inner Mongolia, China. Reg Environ Chang 12:461–474CrossRefGoogle Scholar
  150. Liang T, Feng Q, Yu H et al (2012) Dynamics of natural vegetation on the Tibetan Plateau from past to future using a comprehensive and sequential classification system and remote sensing data. Grassl Sci 58:208–220CrossRefGoogle Scholar
  151. Liang W, Yang Y, Fan D et al (2015) Analysis of spatial and temporal patterns of net primary production and their climate controls in China from 1982–2010. Agric For Meteorol 204:22–36CrossRefGoogle Scholar
  152. Lioubimtseva E, Henebry GM (2009) Climate and environmental change in arid Central Asia: impacts, vulnerability, and adaptations. J Arid Environ 73:963–977CrossRefGoogle Scholar
  153. Liu YY, Evans JP, McCabe MF et al (2013) Changing climate and overgrazing are decimating Mongolian steppes. PLoS One 8:e57599PubMedPubMedCentralCrossRefGoogle Scholar
  154. Löw F, Fliemann E, Abdullaev I et al (2015) Mapping abandoned agricultural land in Kyzyl-Orda, Kazakhstan using satellite remote sensing. Appl Geogr 62:377–390CrossRefGoogle Scholar
  155. Lozano-Parra J, Maneta MP, Zulian G (2014) Climate and topographic controls on simulated pastures production in a semi-arid Mediterranean watershed with scattered tree cover. Hydrol Earth Syst Sci 18:1439–1456CrossRefGoogle Scholar
  156. Mahdavi P, Akhani H, ter Braak CJF (2013) Species diversity and life-form patterns in steppe vegetation along a 3000 m altitudinal gradient in the Alborz Mountains, Iran. Folia Geobot 48:7–22CrossRefGoogle Scholar
  157. Mainjargal G, Buuveibaatar B, Boldbaatar S (2013) Morphology, diet composition, distribution and nesting biology of four Lark species in Mongolia. Mong J Biol Sci 11:3–11Google Scholar
  158. Mallon DP (2016) From feast to famine on the steppes. Oryx 50:189–190CrossRefGoogle Scholar
  159. Mallon DP, Zhigang J (2009) Grazers on the plains: challenges and prospects for large herbivores in Central Asia. J Appl Ecol 46:516–519CrossRefGoogle Scholar
  160. Maussion F, Scherer D, Mölg T et al (2014) Precipitation seasonality and variability over the Tibetan plateau as resolved by the high Asia reanalysis. J Clim 27:1910–1927CrossRefGoogle Scholar
  161. McCauley M (1976) Khrushchev and the development of Soviet agriculture. Holmes & Meier Publishers, Teaneck, New JerseyCrossRefGoogle Scholar
  162. Medail F, Quezel P (1997) Hot-spots analysis for conservation of plant biodiversity in the Mediterranean Basin. Ann Mo Bot Gard 84:112–127CrossRefGoogle Scholar
  163. Meusel H, Jäger E (1992) Vergleichende Chorologie der zentraleuropäischen Flora. Band III: Text und Kartenband. G. Fischer, JenaGoogle Scholar
  164. Meyfroidt P, Schierhorn F, Prishchepov AV et al (2016) Drivers, constraints and trade-offs associated with recultivating abandoned cropland in Russia, Ukraine and Kazakhstan. Glob Environ Chang 37:1–15CrossRefGoogle Scholar
  165. Middleton N, Rueff H, Sternberg T et al (2014) Explaining spatial variations in climate hazard impacts in western Mongolia. Landsc Ecol 30:91–107CrossRefGoogle Scholar
  166. Miehe G, Winiger M, Böhner J, Zhang Y (2001) The climatic diagram map of Central Asia: purpose and concepts. Erdkunde 55:94–97CrossRefGoogle Scholar
  167. Miehe G, Miehe S, Kaiser K et al (2008) Status and dynamics of the Kobresia pygmaea ecosystem on the Tibetan Plateau. Ambio 37:272–279PubMedCrossRefGoogle Scholar
  168. Miehe G, Bach K, Miehe S et al (2011) Alpine steppe plant communities of the Tibetan highlands. Appl Veg Sci 14:547–560CrossRefGoogle Scholar
  169. Mohammat A, Wang X, Xu X et al (2013) Drought and spring cooling induced recent decrease in vegetation growth in Inner Asia. Agric For Meteorol 178:21–30CrossRefGoogle Scholar
  170. Molnár Z, Bíró M, Bartha S, Fekete G (2012) Past trends, present state and future prospects of Hungarian forest-steppes. In: Werger MJA, van Staalduinen M (eds) Eurasian steppes. Ecological problems and livelihoods in a changing world. Springer, Heidelberg, pp 209–252CrossRefGoogle Scholar
  171. Mucina L, Bültmann H, Dierßen K et al (2016) Vegetation of Europe: Hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Appl Veg Sci. doi: 10.1111/avsc.12257
  172. Nakhutsrishvili G (2013) The vegetation of Georgia. Springer, BerlinCrossRefGoogle Scholar
  173. Nandintsetseg B, Shinoda M (2013) Assessment of drought frequency, duration, and severity and its impact on pasture production in Mongolia. Nat Hazard 66:995–1008CrossRefGoogle Scholar
  174. Navarra A, Tubiana L (eds) (2014) Regional assessment of climate change in the Mediterranean: case studies, vol Volume 3. Springer, DordrechtGoogle Scholar
  175. Niu S, Wu M, Han Y et al (2008) Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe. New Phytol 177:209–219PubMedGoogle Scholar
  176. Niu S, Yang H, Zhang Z et al (2009) Non-additive effects of water and nitrogen addition on ecosystem carbon exchange in a temperate steppe. Ecosystems 12:915–926CrossRefGoogle Scholar
  177. Noirfalise A (ed) (1987) Map of the natural vegetation of the member countries of the European Community and the Council of Europe: scale 1: 3 000 000, 2nd edn. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  178. Ognev SI (1967) Mammals of the USSR and adjacent countries. Israel Program for Scientific Translations, JerusalemGoogle Scholar
  179. Olson DM, Dinerstein E, Wikranamayake ED et al (2001) Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51:933–938CrossRefGoogle Scholar
  180. Olson KA, Mueller T, Bolortsetseg S et al (2009) A mega-herd of more than 200,000 Mongolian gazelles Procapra gutturosa: a consequence of habitat quality. Oryx 43:149–153CrossRefGoogle Scholar
  181. Olson KA, Mueller T, Kerby JT et al (2011) Death by a thousand huts? Effects of household presence on density and distribution of Mongolian gazelles. Conserv Lett 4:304–312CrossRefGoogle Scholar
  182. Ooi MKJ (2012) Seed bank persistence and climate change. Seed Sci Res 22:S53–S60CrossRefGoogle Scholar
  183. Peart B (ed) (2008) Life in a working landscape: Towards a conservation strategy for the world’s temperate grasslands: compendium of regional templates on the status of temperate grasslands. Conservation and protection. Temperate grasslands conservation initiative, IUCN/WCPA, Vancouver, http://www.srce.com/files/App_2_Comp_of_Regional_Grassland_Templates.pdf
  184. Peng S, Piao S, Ciais P et al (2010) Change in winter snow depth and its impacts on vegetation in China. Glob Chang Biol 16:3004–3013Google Scholar
  185. Petrick M, Wandel J, Karsten K (2013) Rediscovering the Virgin Lands: agricultural investment and rural livelihoods in a Eurasian frontier area. World Dev 43:164–179CrossRefGoogle Scholar
  186. Piao S, Yin G, Tan J et al (2015) Detection and attribution of vegetation greening trend in China over the last 30 years. Glob Chang Biol 21:1601–1609PubMedCrossRefGoogle Scholar
  187. Pilifosova OV, Eserkepova IB, Dolgih SA (1997) Regional climate change scenarios under global warming in Kazakhstan. Clim Chang 36:23–40CrossRefGoogle Scholar
  188. Polyakova MA, Dembicz I, Becker T et al (2016) Scale- and taxon-dependent patterns of plant diversity in steppes of Khakassia. Biodivers Conserv. doi: 10.1007/s10531-016-1093-y Google Scholar
  189. Porqueddu C, Ates S, Louhaichi M et al (2016) Grasslands in ‘Old World’ and ‘New World’ Mediterranean-climate zones: past trends, current status and future research priorities. Grass Forage Sci 71:1–35CrossRefGoogle Scholar
  190. Poschlod P, Baumann A, Karlik P (2009) Origin and development of grasslands in Central Europe. In: Veen P, Jefferson R, de Smidt J, van der Straaten J (eds) Grasslands in Europe of high nature value. KNNV Publishing, Zeist, pp 15–26CrossRefGoogle Scholar
  191. Propastin P, Kappas M, Muratova N (2008) Inter-annual changes in vegetation activities and their relationship to temperature and precipitation in Central Asia from 1982 to 2003. J Environ Inform 12:75–87CrossRefGoogle Scholar
  192. Ptackova J (2011) Sedentarisation of Tibetan nomads in China: implementation of the Nomadic settlement project in the Tibetan Amdo area; Qinghai and Sichuan Provinces. Pastoralism 1:1–4CrossRefGoogle Scholar
  193. Qiu Q, Wang L, Wang K et al (2015) Yak whole-genome resequencing reveals domestication signatures and prehistoric population expansions. Nat Commun 6:10283PubMedPubMedCentralCrossRefGoogle Scholar
  194. Rachkovskaya EI (2006) Vegetation. In: Republic of Kazakhstan (ed) National atlas of the Republic of Kazakhstan: natural conditions and resources, vol Volume 1. Republican Cartographic Factory, Almaty, pp 362–393Google Scholar
  195. Rachkovskaya EI, Bragina TM (2012) Steppes of Kazakhstan: diversity and present state. In: Werger MJA, van Staalduinen M (eds) Eurasian steppes. Ecological problems and livelihoods in a changing world. Springer, Heidelberg, pp 103–148CrossRefGoogle Scholar
  196. Ramankutty N, Foley JA (1999) Estimating historical changes in global land cover: croplands from 1700 to 1992. Glob Biogeochem Cycles 13:997–1027CrossRefGoogle Scholar
  197. Reading RP, Bedunah D, Amgalanbaatar S (2006) Conserving biodiversity on Mongolian rangelands: implications for protected area development and pastoral uses. USDA For Serv Proc RMRS-P 9:1–17Google Scholar
  198. Retzer V, Reudenbach C (2005) Modelling the carrying capacity and coexistence of pika and livestock in the mountain steppe of the South Gobi, Mongolia. Ecol Model 189:89–104CrossRefGoogle Scholar
  199. Rhode DE, Madsen DB, Brantingham PJ, Dargye T (2007) Yaks, yak dung and prehistoric human habitation of the Tibetan plateau. Dev Quat Sci 9:205–226Google Scholar
  200. Richter M (2001) Vegetationszonen der Erde. Klett-Perthes, GothaGoogle Scholar
  201. Robinson S, Milner-Gulland E (2003) Political change and factors limiting numbers of wild and domestic ungulates in Kazakhstan. Hum Ecol 31:87–110CrossRefGoogle Scholar
  202. Robinson S, Milner-Gulland EJ, Alimaev I (2003) Rangeland degradation in Kazakhstan during the Soviet era: re-examining the evidence. J Arid Environ 53:419–439CrossRefGoogle Scholar
  203. Ronnenberg K, Wesche K (2011) Effects of fertilization and irrigation on Stipa steppes in dry southern Mongolia. Plant Soil 340:239–251CrossRefGoogle Scholar
  204. Ronnenberg K, Wesche K, Hensen I (2008) Germination ecology of Central Asian Stipa spp.: differences among species, seed provenances, and the importance of field studies. Plant Ecol 196:269–280CrossRefGoogle Scholar
  205. Ruprecht E (2006) Successfully recovered grassland: a promising example from Romanian old-fields. Restor Ecol 14:473–480CrossRefGoogle Scholar
  206. Saiko TA, Zonn IS (2000) Irrigation expansion and dynamics of desertification in the Circum-Aral region of Central Asia. Appl Geogr 20:349–367CrossRefGoogle Scholar
  207. Schaller GB (1998) Wildlife of the Tibetan steppe. University of Chicago Press, ChicagoGoogle Scholar
  208. Schierhorn F, Müller D, Beringer T et al (2013) Post-Soviet cropland abandonment and carbon sequestration in European Russia, Ukraine, and Belarus. Glob Biogeochem Cycles 27:1175–1185CrossRefGoogle Scholar
  209. Schroeder FG (1998) Lehrbuch der Pflanzengeographie. Quelle & Meyer, WiesbadenGoogle Scholar
  210. Schultz J (2002) The ecozones of the world. The ecological divisions of the geosphere, 2nd edn. Springer, BerlinGoogle Scholar
  211. Schweizer M, Ayé R, Kashkarov R, Roth T (2014) Conservation action based on threatened species capture taxonomic and phylogenetic richness in breeding and wintering populations of Central Asian birds. PLoS One 9:e110511PubMedPubMedCentralCrossRefGoogle Scholar
  212. Seeber E, Miehe G, Hensen I, Yang Y, Wesche K (2015) Mixed reproduction strategy and polyploidy facilitate dominance of Kobresia pygmaea on the Tibetan Plateau. J Plant Ecol 9:87–99Google Scholar
  213. Shang ZH, Gibb MJ, Long RJ (2012) Effect of snow disasters on livestock farming in some rangeland regions of China and mitigation strategies—a review. Rangel J 34:89–101CrossRefGoogle Scholar
  214. Shang ZH, Gibb MJ, Leiber F et al (2014) The sustainable development of grassland-livestock systems on the Tibetan plateau: problems, strategies and prospects. Rangel J 36:267–296CrossRefGoogle Scholar
  215. Shao C, Chen J, Li L (2013) Grazing alters the biophysical regulation of carbon fluxes in a desert steppe. Environ Res Lett 8:025012CrossRefGoogle Scholar
  216. Singh NJ, Milner-Gulland EJ (2011) Conserving a moving target: planning protection for a migratory species as its distribution changes. J Appl Ecol 48:35–46CrossRefGoogle Scholar
  217. Smelansky I, Tishkov A (2012) The Steppe biome in Russia: ecosystem services, conservation status, and actual challenges. In: Werger MJA, van Staalduinen M (eds) Eurasian steppes. Ecological problems and livelihoods in a changing world. Springer, Heidelberg, pp 45–102CrossRefGoogle Scholar
  218. Smith AT, Foggin JM (1999) The plateau pika (Ochotona curzoniae) is a keystone species for biodiversity on the Tibetan plateau. Anim Conserv 2:235–240CrossRefGoogle Scholar
  219. Sneath D (1998) State policy and pasture degradation in Inner Asia. Science 281:1147–1148CrossRefGoogle Scholar
  220. Sommer R, de Pauw E (2010) Organic carbon in soils of Central Asia: status quo and potentials for sequestration. Plant Soil 338:273–288CrossRefGoogle Scholar
  221. Soussana JF, Luscher A (2007) Temperate grasslands and global atmospheric change: a review. Grass Forage Sci 62:127–134CrossRefGoogle Scholar
  222. Spence L, Liancourt P, Boldgiv B et al (2014) Climate change and grazing interact to alter flowering patterns in the Mongolian steppe. Oecologia 175:251–260PubMedCrossRefGoogle Scholar
  223. Sternberg T (2015) Desert boundaries: the once and future Gobi. Geogr J 181:61–72CrossRefGoogle Scholar
  224. Stocker TF, Qin D, Plattner GK et al (eds) (2013) Technical summary. In: Climate change, the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  225. Stubbe M (1997) Naturschutz in der Mongolei: Eine nationale und internationale Herausforderung. In: Erdmann KH (ed) Internationaler Naturschutz. Springer, Berlin, pp 281–308CrossRefGoogle Scholar
  226. Stumpp M, Wesche K, Retzer V, Miehe G (2005) Impact of grazing livestock and distance from water points on soil fertility in southern Mongolia. Mt Res Dev 25:244–251CrossRefGoogle Scholar
  227. Sudnik-Wójcikowska B, Moysiyenko I (2012) Kurhany na „Dzikich Polach”: dziedzictwo kultury i ostoja ukraińskiego stepu. [Kurgans in the ‘Wild Field’: a cultural heritage and refugium of the Ukrainian steppe.] Wydawnictwa Uniwersytetu Warszawskiego, WarzawaGoogle Scholar
  228. Takhtajan AL (1986) Floristic regions of the world. University of California Press, BerkeleyGoogle Scholar
  229. Tchebakova N, Parfenova E, Soja A (2009) The effects of climate, permafrost and fire on vegetation change in Siberia in a changing climate. Environ Res Lett 4:045013CrossRefGoogle Scholar
  230. Terbish K, Munkhbayar K, Clark EL et al (2006) Mongolia red list of reptiles and amphibians. Zoological Society of London, LondonGoogle Scholar
  231. The Guardian (2016) Six endangered wild horses moved to Russian reserve. http://www.theguardiancom/world/2016/mar/07/six-endangered-wild-horses-moved-to-russian-reserve
  232. Thuiller W, Lavorel S, Araujo MB et al (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102:8245–8250PubMedPubMedCentralCrossRefGoogle Scholar
  233. Toleubayev K, Jansen K, van Huis A (2007) Locust control in transition: the loss and reinvention of collective action in post-Soviet Kazakhstan. Ecol Soc 12:38Google Scholar
  234. Török P, Vida E, Deák B, Lengyel S, Tóthmérész B (2011) Grassland restoration on former croplands in Europe: an assessment of applicability of techniques and costs. Biodivers Conserv 20:2311–2332CrossRefGoogle Scholar
  235. Tzonev R, Dimitrov M, Roussakova V (2006) The Western-Pontic steppe vegetation in Bulgaria. Haquetia 5:5–23Google Scholar
  236. Upton C (2005) Institutions in a pastoral society: processes of formationa and transformation in post-socialist Mongolia. CSSAAME 25:584–599Google Scholar
  237. Valkó O, Török P, Deák B, Tóthmérész B (2014) Prospects and limitations of prescribed burning as a management tool in European grasslands. Basic Appl Ecol 15:26–33CrossRefGoogle Scholar
  238. van Dierendonck MC, Wallis de Vries MF (1996) Ungulate reintroductions: experiences with the takhi or Przewalski horse (Equus ferus przewalskii) in Mongolia. Conserv Biol 10:728–740CrossRefGoogle Scholar
  239. Vassilev K, Apostolova I (2013) Bulgarian steppic vegetation: an overview. In: Baumbach H, Pfützenreuter S (eds) Steppenlebensräume Europas: Gefährdung, Erhaltungsmaßnahmen und Schutz. Thüringer Ministerium für Landwirtschaft, Forsten, Umwelt und Naturschutz, Erfurt, pp 191–200Google Scholar
  240. von Wehrden H, Hanspach J, Ronnenberg K, Wesche K (2010) The inter-annual climatic variability in Central Asia: a contribution to the discussion on the importance of environmental stochasticity in drylands. J Arid Environ 74:1212–1215CrossRefGoogle Scholar
  241. von Wehrden H, Wesche K, Chuluunkhuyag O, Fust P (2015) Correlation of trends in cashmere production and declines of large wild mammals: response to Berger et al. 2013. Conserv Biol 29:286–289CrossRefGoogle Scholar
  242. Vostokova EA, Gunin PD (eds) (2005) Ecosystems of Mongolia: Atlas. Russian Academy of Sciences, MoscowGoogle Scholar
  243. Wakefield S, Knowles J, Zimmermann W, van Dierendonck M (2002) Status and action plan for the Przewalski’s horse (Equus ferus przewalskii). In: Moehlman PD (ed) Equids: zebras, asses and Horses. IUCN, Gland, pp 82–92Google Scholar
  244. Walker DA, Raynolds MK, Daniëls FJA et al (2005) The Circumpolar Arctic vegetation map. J Veg Sci 16:267–282CrossRefGoogle Scholar
  245. Walker DA, Daniëls FJA, Alsos I et al (2016) Circumpolar Arctic vegetation: a hierarchic review and roadmap toward an internationally consistent approach to survey, archive and classify tundra plot data. Environ Res Lett 11:055005CrossRefGoogle Scholar
  246. Walter H, Breckle SW (1985) Ecological systems of the geobiosphere. Vol. 1. Ecological principles in global perspective. Springer, BerlinCrossRefGoogle Scholar
  247. Walter H, Breckle SW (1999) Vegetation und Klimazonen. Ulmer, StuttgartGoogle Scholar
  248. Walter H, Breckle SW (eds) (2004) Ökologie der Erde. Band 2: Spezielle Ökologie der tropischen und subtropischen Zonen. 3rd edn. Spektrum Akademischer Verlag, MünchenGoogle Scholar
  249. Wan Y-f, Gao Q-z, Li Y et al (2014) Change of snow cover and its impact on alpine vegetation in the source regions of large rivers on the Qinghai-Tibetan Plateau, China. Arct Antarct Alp Res 46:632–644CrossRefGoogle Scholar
  250. Wang Y, Wesche K (2016) Complex responses of vegetation and soil to livestock grazing in Chinese grasslands: a review of Chinese literature. Biodivers Conserv. doi: 10.1007/s10531-015-1034-1 Google Scholar
  251. Wang X, Chen F, Hasi E, Li J (2008) Desertification in China: an assessment. Earth Sci Rev 88:188–206CrossRefGoogle Scholar
  252. Wang MP, Zhao CZ, Long RJ, Yang YH (2010) Rangeland governance in China: overview, impacts on Sunan county in Gansu province and future options. Rangel J 32:155–163CrossRefGoogle Scholar
  253. Wang Y, Wang J, Li S, Qin D (2014) Vulnerability of the Tibetan pastoral systems to climate and global change. Ecol Soc 19:8CrossRefGoogle Scholar
  254. Ward D, Saltz D, Rowen M, Schmidt I (1999) Effects of grazing by re-introduced Equus hemionus on the vegetation in a Negev desert erosion cirque. J Veg Sci 10:579–586CrossRefGoogle Scholar
  255. Wen L, Dong S, Li et al (2013) The impact of land degradation on the C pools in alpine grasslands of the Qinghai-Tibet Plateau. Plant Soil 368:329–340CrossRefGoogle Scholar
  256. Werger MJA, van Staalduinen M (eds) (2012) Eurasian steppes. Ecological problems and livelihoods in a changing world. Springer, HeidelbergGoogle Scholar
  257. Wesche K, Nadrowski K, Retzer V (2007) Habitat engineering under dry conditions: the impact of pikas (Ochotona pallasi) on southern Mongolian mountain steppes. J Veg Sci 18:665–674CrossRefGoogle Scholar
  258. White RP, Murray S, Rohweder M (2000) Pilot analysis of global ecosystems. Grassland ecosystems. World Resource Institute, WashingtonGoogle Scholar
  259. Wiesmeier M, Munro S, Barthold F et al (2015) Carbon storage capacity of semi-arid grassland soils and sequestration potentials in northern China. Glob Chang Biol 21:3836–3845PubMedCrossRefGoogle Scholar
  260. Winkler D (2008) Yartsa Gunbu (Cordyceps sinensis) and the fungal commodification of Tibet’s rural economy. Econ Bot 62:291–305CrossRefGoogle Scholar
  261. Wit P, Vegten JK (1998) Landscape: human interactions in the Hustain Nuruu Mountain Steppe reserve. In: Dömpke S, Succow M (eds) Cultural landscapes and nature conservation in northern Eurasia. Naturschutzbund Deutschland, Bonn, pp 248–257Google Scholar
  262. Wright C, De Beurs K, Akhmadieva Z, Groisman PY, Henebry G (2009) Reanalysis data underestimate significant changes in growing season weather in Kazakhstan. Environ Res Lett 4:045020CrossRefGoogle Scholar
  263. Wu X, Li P, Jiang C et al (2014) Climate changes during the past 31 years and their contribution to the changes in the productivity of rangeland vegetation in the Inner Mongolian typical steppe. Rangel J 36:519–526Google Scholar
  264. Xia J, Wan S (2008) Global response patterns of terrestrial plant species to nitrogen addition. New Phytol 179:428–439PubMedCrossRefGoogle Scholar
  265. Xia C, Cao J, Zhang H et al (2014) Reintroduction of Przewalski’s horse (Equus ferus przewalskii) in Xinjiang, China: the status and experience. Biol Conserv 177:142–147CrossRefGoogle Scholar
  266. Yang X, Zhang K, Jia B, Ci L (2005) Desertification assessment in China: an overview. J Arid Environ 63:517–531CrossRefGoogle Scholar
  267. Yang Y, Fang J, Fay PA, Bell JE, Ji C (2010) Rain use efficiency across a precipitation gradient on the Tibetan Plateau. Geophys Res Lett 37:L15072Google Scholar
  268. Yang Z-p, Gao J-x, Zhao L, Xu X-l, Ouyang H (2013) Linking thaw depth with soil moisture and plant community composition: effects of permafrost degradation on alpine ecosystems on the Qinghai-Tibet Plateau. Plant Soil 367:687–700CrossRefGoogle Scholar
  269. Yang Y, Guan H, Shen M, Liang W, Jiang L (2015) Changes in autumn vegetation dormancy onset date and the climate controls across temperate ecosystems in China from 1982 to 2010. Glob Chang Biol 21:652–665PubMedCrossRefGoogle Scholar
  270. Yesdauletova A, Yesdauletov A, Aliyeva S, Kakenova G (2015) Famine and Kazakh Society in the 1930s. Anthropologist 22:537–544Google Scholar
  271. Yu H, Luedeling E, Xu J (2010) Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proc Natl Acad Sci USA 107:22151–22156PubMedPubMedCentralCrossRefGoogle Scholar
  272. Yue T-X, Zhao N, Ramsey RD et al (2013) Climate change trend in China, with improved accuracy. Clim Chang 120:137–151CrossRefGoogle Scholar
  273. Zakh VA, Ryabogina NE, Chlachula J (2010) Climate and environmental dynamics of the mid-to late Holocene settlement in the Tobol-Ishim forest-steppe region, West Siberia. Quat Int 220:95–101CrossRefGoogle Scholar
  274. Zech W, Schad P, Hintermaier-Erhard G (2014) Böden der Welt. Springer, BerlinCrossRefGoogle Scholar
  275. Zeder MA (2008) Domestication and early agriculture in the Mediterranean Basin: origins, diffusion, and impact. Proc Natl Acad Sci USA 105:11597–11604PubMedPubMedCentralCrossRefGoogle Scholar
  276. Zemmrich A, Hilbig W, Oyuunchimeg D (2010) Plant communities along an elevation gradient under special consideration of grazing in Western Mongolia. Phytocoenologia 40:91–115CrossRefGoogle Scholar
  277. Zhang ZH, Li XY, Jiang ZY et al (2013) Changes in some soil properties induced by re-conversion of cropland into grassland in the semiarid steppe zone of Inner Mongolia, China. Plant Soil 373:89–106CrossRefGoogle Scholar
  278. Zhang Z, Wang X, Zhao X et al (2014) A 2010 update of National Land Use/Cover Database of China at 1:10,0000 scale using medium spatial resolution satellite images. Remote Sens Environ 149:142–154CrossRefGoogle Scholar
  279. Zhao X, Hu H, Shen H et al (2014) Satellite-indicated long-term vegetation changes and their drivers on the Mongolian Plateau. Landsc Ecol 30:1599–1611CrossRefGoogle Scholar
  280. Zheng Y, Xie Z, Jiang L et al (2006) Vegetation responses along environmental gradients in the Ordos plateau, China. Ecol Res 21:396–404CrossRefGoogle Scholar
  281. Zhong Z, Wang D, Zhu H et al (2014) Positive interactions between large herbivores and grasshoppers, and their consequences for grassland plant diversity. Ecology 95:1055–1064PubMedCrossRefGoogle Scholar
  282. Zhu TC (1993) Grasslands of China. In: Coupland RT (ed) Ecosystems of the world 8B: Natural grasslands—Eastern hemisphere and résumé. Elsevier, Amsterdam, pp 61–82Google Scholar
  283. Zlotin RI, Khodashova K (1980) The role of animals in biological cycling of forest-steppe ecosystems. Hutchinson and Ross, DowdenGoogle Scholar
  284. Zohary M (1973) Geobotanical foundations of the Middle East, vol 2. G. Fischer, StuttgartGoogle Scholar
  285. Zólyomi B, Fekete G (1994) The Pannonian loess steppe: differentiation in space and time. Abstr Bot 18:29–41Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Senckenberg Museum of Natural History GörlitzGörlitzGermany
  2. 2.Plant Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER)University of BayreuthBayreuthGermany
  3. 3.Faculty of Agriculture and Natural SciencesDüzce UniversityDüzceTurkey
  4. 4.Institute of Landscape EcologyUniversity of MünsterMünsterGermany
  5. 5.MTA-DE Biodiversity and Ecosystem Services Research GroupDebrecenHungary
  6. 6.German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-LeipzigLeipzigGermany

Personalised recommendations