Biodiversity and Conservation

, Volume 25, Issue 11, pp 2071–2091 | Cite as

Change in the bryophyte diversity and species composition of Central European temperate broad-leaved forests since the late nineteenth century

  • Sebastian Dittrich
  • Christoph Leuschner
  • Markus Hauck
Original Paper


The diversity and species composition of the bryophyte flora colonizing the forest floor, live trees and deadwood in semi-natural broad-leaved forests of northern Germany was compared between a recent survey in 2013 and historical records from around 1900. The survey was based on the comparison of presence/absence data and their interpretation with help of ecological indicator values. Total species richness has declined in bryophytes growing on the forest floor but not in the other guilds, whereas a dramatic species turnover was found for all three guilds. This turnover was apparently primarily driven by the increased atmospheric load of reactive nitrogen from anthropogenic emissions. Sensitive species were replaced by more eutrophication-tolerant bryophytes; liverworts are overrepresented among the sensitive and thus declining species. Promotion of the competitive strength of vascular plants due to increased nitrogen levels is the likely cause of the reduction of bryophyte species richness on the forest floor. Former acidification by high atmospheric sulfur dioxide loads has left an imprint in the bryophyte vegetation by having favored acidophytic species and discriminating against basiphytic species. An increase in the mean indicator value for temperature suggests a beginning effect of climate warming on the bryophyte vegetation. Change in forest structure had an apparently smaller imprint on the bryophyte diversity of the studied semi-natural forests than atmospheric chemistry and climate. In this respect, bryophytes differ from the ecologically similar lichens, where published studies from the same region showed a dramatic decline of species richness and a stronger susceptibility to forest management.


Eutrophication Nitrogen Acidification Climate warming Forest management Nature conservation 



The Ministry of Science and Culture of the State of Lower Saxony funded the study with the Grant ‘Biodiversity Change in Central Europe (BIOCHANGE)’ to Ch. Leuschner in the framework of the Cluster of Excellence ‘Functional Biodiversity Research’ at the University of Göttingen. Bernd Raufeisen is thanked for drawing the map of the study area.

Supplementary material

10531_2016_1179_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 16 kb)


  1. Åström M, Dynesius M, Hylander K, Nilsson C (2005) Effects of slash harvest on bryophytes and vascular plants in southern boreal forest clear-cuts. J Appl Ecol 42:1194–1202CrossRefGoogle Scholar
  2. Bates JW, Brown DH (1981) Epiphyte differentiation between Quercus petraea and Fraxinus excelsior in a maritime area of South West England. Vegetatio 48:61–70CrossRefGoogle Scholar
  3. Bates JW, Farmer AM (1992) Bryophytes and lichens in a changing environment. Oxford Science Publications, OxfordGoogle Scholar
  4. Bates JW, Proctor MC, Preston CD, Hodgetts NG, Perry AR (1997) Occurrence of epiphytic bryophytes in a ‘tetrad’ transect across southern Britain 1. Geographical trends in abundance and evidence of recent change. J Bryol 19:685–714CrossRefGoogle Scholar
  5. Begemann I (2003) Palynologische Untersuchungen zur Geschichte von Umwelt und Besiedlung im südwestlichen Harzvorland. Dissertation, GöttingenGoogle Scholar
  6. Caners RT, Macdonald SE, Belland RJ (2013) Bryophyte assemblage structure after partial harvesting in boreal mixedwood forest depends on residual canopy abundance and composition. For Ecol Manag 289:489–500CrossRefGoogle Scholar
  7. Clarke KR (1993) Non-parametric multivariate analysis of changes in community structure. Aust J Ecol 18:117–143CrossRefGoogle Scholar
  8. Davies L, Bates JW, Bell JNB, James PW, Purvis OW (2007) Diversity and sensitivity of epiphytes to oxides of nitrogen in London. Environ Pollut 146:299–310CrossRefPubMedGoogle Scholar
  9. Delgado V, Ederra V (2013) Long-term changes (1982–2010) in the bryodiversity of Spanish beech forests assessed by means of Ellenberg indicator values of temperature, nitrogen, light and pH. Biol Conserv 157:99–107CrossRefGoogle Scholar
  10. Dierßen K (2001) Distribution, ecological amplitude and phytosociological characterization of European bryophytes. Bryophyt Bibl 56:1–289Google Scholar
  11. Dirkse GM, Martakis GFP (1992) Effects of fertilizer on bryophytes in Swedish experiments on forest fertilization. Biol Conserv 59:155–161CrossRefGoogle Scholar
  12. Dittrich S, Jacob M, Bade C, Leuschner C, Hauck M (2014) The significance of deadwood for total bryophyte, lichen, and vascular plant diversity in an old-growth spruce forest. Plant Ecol 215:1123–1137CrossRefGoogle Scholar
  13. Drehwald U, Preising E (1991) Die Pflanzengesellschaften Niedersachsens. Bestandesentwicklung, Gefährdung und Schutzprobleme. Moosgesellschaften. Nat Landsch Niedersachs 20(9):1–168Google Scholar
  14. Düll R (2001) Zeigerwerte von Laub- und Lebermoosen. Scr Geobot 18:175–220Google Scholar
  15. Dzwonko Z, Gawroński S (2002) Effects of litter removal on species richness and acidification of a mixed oak-pine woodland. Biol Conserv 106:389–398CrossRefGoogle Scholar
  16. Ellenberg H (2001) Zeigerwerte der Gefäßpflanzen (ohne Rubus). Scr Geobot 18:9–166Google Scholar
  17. Ellenberg H, Leuschner C (2010) Vegetation Mitteleuropas mit den Alpen, 6th edn. Ulmer, StuttgartGoogle Scholar
  18. Frahm J-P, Klaus D (2001) Bryophytes as indicators of recent climate fluctuations in Central Europe. Lindbergia 26:97–104Google Scholar
  19. Frahm J-P, Wiethold J (2004) Die Moosflora des Mittelalters und der Frühen Neuzeit in Mitteleuropa nach archäologischen Funden zusammengestellt. Herzogia 17:303–324Google Scholar
  20. Franzen-Reuter I, Frahm J-P (2007) Auswirkungen experimenteller Stickstoffgaben auf die Epiphytenflora in Dauerbeobachtungsflächen (Rheinland-Pfalz, Deutschland). Herzogia 20:61–75Google Scholar
  21. Friedel A, Müller F (2004) Bryophytes and lichens as indicators for changes of air pollution in the Serrahn Natural Forest Reserve (Mueritz National Park). Herzogia 17:279–286Google Scholar
  22. Gläser A (1994) Moosflora und -vegetation in den Wäldern auf Muschelkalk und Buntsandstein bei Göttingen. Limprichtia 4:1–155Google Scholar
  23. Haase D, Walz U, Neubert M, Rosenberg M (2007) Changes to Central European landscapes—analysing historical maps to approach current environmental issues, examples from Saxony, Central Germany. Land Use Policy 24:248–263CrossRefGoogle Scholar
  24. Hallingbäck T (1992) The effect of air pollution on mosses in southern Sweden. Biol Conserv 59:163–170CrossRefGoogle Scholar
  25. Hauck M (2010) Ammonium and nitrate tolerance in lichens. Environ Pollut 158:1127–1133CrossRefPubMedGoogle Scholar
  26. Hauck M, Wirth V (2010) Preference of lichens for shady habitats is correlated with intolerance to high nitrogen levels. Lichenologist 42:475–484CrossRefGoogle Scholar
  27. Hauck M, Otto PI, Dittrich S, Jacob M, Bade C, Dörfler I, Leuschner C (2011) Small increase in substratum pH causes the dieback of one of Europe’s most common lichens, Lecanora conizaeoides. Ann Bot 108:359–366CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hauck M, Zimmermann J, Jacob M, Dulamsuren Ch, Bade C, Ahrends B, Leuschner C (2012) Rapid recovery of stem increment in Norway spruce at reduced SO2 levels in the Harz Mountains, Germany. Environ Pollut 164:132–141CrossRefPubMedGoogle Scholar
  29. Hauck M, de Bruyn U, Leuschner C (2013) Dramatic diversity losses in epiphytic lichens in temperate broad-leaved forests during the last 150 years. Biol Conserv 157:136–145CrossRefGoogle Scholar
  30. Heunisch C, Caspers G, Elbracht J, Langer A, Röhling H-G, Schwarz C, Streif H (2007) Erdgeschichte von Niedersachsen. Geologie und Landschaftsentwicklung. Landesamt für Bergbau, Energie und Geologie, HannoverGoogle Scholar
  31. Hill MO, Preston CD, Bosanquet SDS, Roy DB (2007) BRYOATT. Attributes of British and Irish mosses, liverworts and hornworts. NERC Centre for Ecology and Hydrology and Countryside Council for Wales, CambridgeGoogle Scholar
  32. Hofmann H, Urmi E, Bisang I, Müller N, Küchler M, Schnyder N, Schubiger C (2007) Retrospective assessment of frequency changes in Swiss bryophytes over the last two centuries. Lindbergia 32:18–32Google Scholar
  33. Hofmeister J, Hošek J, Holá E, Novozámska E (2015) Decline in bryophyte diversity in predominant types of Central European managed forests. Biodivers Conserv 24:1391–1402CrossRefGoogle Scholar
  34. Humphrey JW, Davey S, Peace AJ, Ferris R, Harding K (2002) Lichens and bryophyte communities of planted and semi-natural forests in Britain: the influence of site type, stand structure and deadwood. Biol Conserv 107:165–180CrossRefGoogle Scholar
  35. Kaplan JO, Krumhardt KM, Zimmermann N (2009) The prehistoric and preindustrial deforestation of Europe. Quat Sci Rev 28:3016–3034CrossRefGoogle Scholar
  36. Kirleis W (2002) Vegetationsgeschichtliche und archäobotanische Untersuchungen zur Landwirtschaft und Umwelt im Bereich der prähistorischen Siedlungen bei Rullstorf, Ldkr. Lüneburg. Dissertation, GöttingenGoogle Scholar
  37. Koperski M, Sauer M, Braun W, Gradstein SR (2000) Referenzliste der Moose Deutschlands. Schr Veg 34:1–519Google Scholar
  38. Koppe F (1944) Die Moosflora von Hildesheim nach den Ansammlungen von August Schlauter, Dr. Heinrich Rössig u.a. Hercynia 3:588–607Google Scholar
  39. Koranda M, Kerschbaum S, Wanek W, Zechmeister H, Richter A (2007) Physiological responses of bryophytes Thuidium tamariscinum and Hylocomium splendens to increased nitrogen deposition. Ann Bot 99:161–169CrossRefPubMedGoogle Scholar
  40. Kriebitzsch W-U, Bültmann H, von Oheimb G, Schmidt M, Thiel H, Ewald J (2013) Forest specific diversity of vascular plants, bryophytes and lichens. In: Kraus D, Krumm F (eds) Integrative approaches as an opportunity for the conservation of forest biodiversity. European Forest Institute, Freiburg, pp 158–169Google Scholar
  41. Krug A (1993) Drainage history and land use pattern of a Swedish river system—their importance for understanding nitrogen and phosphorus load. Hydrobiologia 251:285–296CrossRefGoogle Scholar
  42. Laaka S (1992) The threatened epixylic bryophytes in old primeval forests in Finland. Biol Conserv 59:151–154CrossRefGoogle Scholar
  43. Marstaller R (2006) Syntaxonomischer Konspekt der Moosgesellschaften Europas und angrenzender Gebiete. Haussknechtia Beih 13:1–192Google Scholar
  44. Mayer W, Pfefferkorn-Dellali V, Türk R, Dullinger S, Mirtl M, Dirnbröck T (2013) Significant decrease in epiphytic lichen diversity in a remote area in the European Alps, Austria. Basic Appl Ecol 14:396–403CrossRefGoogle Scholar
  45. Mitchell RJ, Sutton MA, Truscott A-M, Leith ID, Cape JN, Pitcairn CER, van Dijk N (2004) Growth and tissue nitrogen of epiphytic Atlantic bryophytes: effects of increased and decreased atmospheric N deposition. Funct Ecol 18:322–329CrossRefGoogle Scholar
  46. Muhle H (1977) Ein Epiphytenkataster niedersächsischer Naturwaldreservate. Mitt Flor-Soz Arb N F 19–20:47–62Google Scholar
  47. Mylona S (1996) Sulphur dioxide emissions in Europe 1880–1991 and their effect on sulphur concentrations and depositions. Tellus B 48:662–689CrossRefGoogle Scholar
  48. Nebel M, Philippi G (eds) (2000) Die Moose Baden-Württembergs. Band 1: Allgemeiner Teil. Spezieller Teil (Bryophytina I, Andreales bis Funariales). Ulmer, StuttgartGoogle Scholar
  49. Nebel M, Philippi G (eds) (2001) Die Moose Baden-Württembergs. Band 2: Spezieller Teil (Bryophytina II, Schistostegales bis Hypnobryales). Ulmer, StuttgartGoogle Scholar
  50. Nebel M, Philippi G (eds) (2005) Die Moose Baden-Württembergs. Band 3. Spezieller Teil (Bryophyta: Sphagnopsida, Marchantiophyta, Anthocerotophyta). Ulmer, StuttgartGoogle Scholar
  51. Pócs T (2011) Signs of climate change in the bryoflora of Hungary. In: Tuba Z, Slack NG, Stark LR (eds) Bryophyte ecology and climate change. Cambridge University Press, Cambridge, pp 359–370Google Scholar
  52. Pott R, Hüppe J (1991) Die Hudelandschaften Nordwestdeutschlands. Abh Westfal Mus Nat 53(1–2):1–313Google Scholar
  53. Preußing M, Drehwald U, Koperski M, Thiel H, Waesch G et al (2011) Waldartenliste der Moose Deutschlands. BfN-Skr 299:75–88Google Scholar
  54. Quelle F (1902) Göttingens Moosvegetation. Eberhardt, NordhausenGoogle Scholar
  55. Richter S, Schütze P, Bruelheide H (2009) Untersuchungen zu Flora und Vegetation der epiphytischen Moose in Halle/Saale (Sachsen-Anhalt). Hercynia N F 42:177–195Google Scholar
  56. Schönwiese CD, Janoschitz R (2008) Klima-Trendatlas Deutschland 1901–2000. Ber Inst Atmos Umwelt Univ Frankf/Main 4:1–64Google Scholar
  57. Schubart W (1966) Die Entwicklung des Laubwaldes als Wirtschaftswald zwischen Elbe, Saale und Weser. Aus dem Walde 14:1–213Google Scholar
  58. Skrindo A, Økland RH (2005) Effects of fertilization on understorey vegetation in a Norwegian Pinus sylvestris forest. Appl Veg Sci 5:167–172CrossRefGoogle Scholar
  59. Stetzka KM (1994) Die Waldbodenvegetation als Bioindikator für Umweltbelastungen unter besonderer Berücksichtigung der Moosflora. Lang- und kurzfristige Vegetationsvergleiche. Diss Bot 232:1–412Google Scholar
  60. van Herk CM (1999) Mapping of ammonia pollution with epiphytic lichens in the Netherlands. Lichenologist 31:9–20CrossRefGoogle Scholar
  61. van Herk CM, Aptroot A, van Dobben HF (2002) Long-term monitoring in the Netherlands suggests that lichens respond to global warming. Lichenologist 34:141–154CrossRefGoogle Scholar
  62. Vestreng V, Ntziachristos L, Semb A, Reis S, Isaksen ISA, Tarrasón L (2009) Evolution of NOx emissions in Europe with focus on road transport control measures. Atmos Chem Phys 9:1503–1520CrossRefGoogle Scholar
  63. Wehrhahn W (1908) Flora der Lebermoose des Gebietes der Stadt Hannover und des südlichen Teils von Calenberg bis Hameln. Ein Beitrag zur Heimatforschung. Jahresber Naturhist Ges Hann 55–57:137–163Google Scholar
  64. Wehrhahn W (1921) Flora der Laub- und Lebermoose der Umgebung von Hannover. Eine geographisch-floristische Heimatkunde für das Gebiet. Engelhardt, HannoverGoogle Scholar
  65. Zebisch M, Grothmann T, Schroeter D, Hasse C, Fritsch U, Cramer W (2005) Climate change in Germany: vulnerability and adaptation of climate sensitive sectors. Federal Environmental Agency, DessauGoogle Scholar
  66. Zechmeister HG, Dirnböck T, Hülber K, Mirtl M (2007) Assessing airborne pollution effects on bryophytes. Lessons learned through long-term integrated monitoring in Austria. Environ Pollut 147:696–705CrossRefPubMedGoogle Scholar
  67. Zerbe S, Brande A (2003) Woodland degradation and regeneration in Central Europe during the last 1,000 years—a case study in NE Germany. Phytocoenologia 33:683–700CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Sebastian Dittrich
    • 1
    • 2
  • Christoph Leuschner
    • 1
  • Markus Hauck
    • 1
    • 3
  1. 1.Plant Ecology, Albrecht von Haller Institute for Plant SciencesGeorg August University of GöttingenGöttingenGermany
  2. 2.Biodiversity and ConservationTechnical University of DresdenTharandtGermany
  3. 3.Functional Ecology of Plants, Institute for Biology and Environmental SciencesCarl von Ossietzky University of OldenburgOldenburgGermany

Personalised recommendations