Advertisement

Biodiversity and Conservation

, Volume 25, Issue 10, pp 1899–1920 | Cite as

Community ecological modelling as an alternative to physiographic classifications for marine conservation planning

  • Emily M RubidgeEmail author
  • Katie S. P. Gale
  • Janelle M. R. Curtis
Original Paper

Abstract

Accurate mapping of marine species and habitats is an important yet challenging component of establishing networks of representative marine protected areas. Due to limited biological data, marine classifications based on abiotic data are often used as surrogates to represent biological patterns. We tested the surrogacy of an existing physiographic marine classification using non-metric multidimensional scaling and permutational analysis of variance to determine whether species composition was significantly different among physiographic units. We also present an alternative ecological classification that incorporates biological and environmental data in a community modeling approach. We use data on 174 species of demersal fish and benthic invertebrates to identify mesoscale biological assemblages in a 100,000 km2 study area in the northeast Pacific Ocean. We identified assemblages using cluster analysis then used a random forest model with 12 environmental variables to delineate mesoscale ecological units. Our community modelling approach resulted in five geographically coherent ecological units that were best explained by changes in depth, temperature and salinity. Our model showed high predictive performance (AUC = 0.93) and the resulting ecological units represent more distinct species assemblages than those delineated by physiographic variables alone. A strength of our analysis is the ability to map model uncertainty to identify transition zones at unit boundaries. The output of this study provides a biotic driven classification that can be used to better achieve representativity in the MPA planning process.

Keywords

MPA network Ecological representation Random forest Cluster analysis IndVal 

Notes

Acknowledgments

We are grateful for feedback and discussion from Ed Gregr, Laura Feyrer, Erin McClelland, Greig Oldford, Chris McDougall, Carrie Robb, and Karin Bodtker as well as members of the Canada-British Columbia-First Nations Marine Protected Area Technical Team. The manuscript was greatly improved by two anonymous reviewers. We also would like to thank Kate Rutherford, Leslie Barton, Jason Dunham and others who provided access and answered questions about data sources. Funding for this project was provided by the Canada-British Columbia Marine Protected Area Implementation Team and Fisheries and Oceans Canada’s National Conservation Plan Program and the Strategic Program for Ecosystem Research and Analysis.

Supplementary material

10531_2016_1167_MOESM1_ESM.docx (1.6 mb)
Supplementary material 1 (DOCX 1641 kb)

References

  1. Araujo MB (2002) Biodiversity hotspots and zones of ecological transition Cons. Biol 16:1662–1663Google Scholar
  2. AXYS Environmental Consulting Ltd (2000) British Columbia Marine Ecological Classification Update – Method Options. Prepared for Land Use Coordination Office, Government of British ColumbiaGoogle Scholar
  3. AXYS Environmental Consulting Ltd. (2001). British Columbia Marine Ecological Classification Update. Ministry of Sustainable Resource Management Decision Support ServicesGoogle Scholar
  4. Airamé S, Dugan JE, Lafferty KD et al (2003) Applying ecological criteria to marine reserve design: a case study from the california channel islands. Ecol Appl 13:S170–S184CrossRefGoogle Scholar
  5. Allen MJ, Smith GB (1988) Atlas and zoogeography of common fishes in the bering sea and northeastern pacific. NOAA Technical Report NMFS 66. National Marine Fisheries Service, NOAAGoogle Scholar
  6. Anderson MJ, Walsh DCI (2013) PERMANOVA, ANOSIM, and the mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing? Ecol Monog 83:557–574CrossRefGoogle Scholar
  7. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46Google Scholar
  8. Anderson MJ (2006) Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62:245–253CrossRefPubMedGoogle Scholar
  9. Ban NC (2009) Minimum data requirements for designing a set of marine protected areas, using commonly available abiotic and biotic datasets. Biodiv Cons 18(7):1829–1845CrossRefGoogle Scholar
  10. Ban NC, Vincent AC (2009) Beyond marine reserves: exploring the approach of selecting areas where fishing is permitted, rather than prohibited. PLoS One 4:e6258. doi: 10.1371/journal.pone.0006258 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Ban NC, McDougall C, Beck M et al (2014) Applying empirical estimates of marine protected area effectiveness to assess conservation plans in British Columbia, Canada. Biol Consr 180:134–148. doi: 10.1016/j.biocon.2014.09.037 CrossRefGoogle Scholar
  12. Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Global Ecol Biogeog 19(1):134–143CrossRefGoogle Scholar
  13. Beale CM, Lennon JJ (2012) Incorporating uncertainty in predictive species distribution modelling. Philos Trans R Soc Lond B 367:247–258CrossRefGoogle Scholar
  14. Beier P, Sutcliffe P, Hjort J et al (2015) A review of selection-based tests of abiotic surrogates for species representation. Conserv Biol 29:668–679. doi: 10.1111/cobi.12509 CrossRefPubMedGoogle Scholar
  15. Breiman L (2001) Random forests. Mach L 45:5–32Google Scholar
  16. Canada—British Columbia Marine Protected Area Network Strategy(2014) Available from https://www.for.gov.bc.ca/tasb/slrp/pdf/ENG_BC_MPA_LOWRES.pdf Accessed 8 June 2015
  17. CBD (2010) Aichi Biodiversity Targets, Strategic Plan for Biodiversity 2011-2020 Convention on Biodiversity, https://www.cbd.int/sp/targets/. Accessed 4 January 2016
  18. Ceballos G, Ehrlich P, Barnosky A et al (2015) Accelerated modern human-induced species losses: Entering the sixth mass extinction. Sci Adv 1:1–5. doi: 10.1126/sciadv.1400253 CrossRefGoogle Scholar
  19. Core Development Team R (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  20. Crase B, Liedloff AC, Wintle BA (2012) A new method for dealing with residual spatial autocorrelation in species distribution models. Ecography 35(10):888–897CrossRefGoogle Scholar
  21. Cutler DR, Edwards TC Jr, Beard KH et al (2007) Random forests for classification in ecology. Ecology 88:2783–2792CrossRefPubMedGoogle Scholar
  22. De Càceres M, Legendre P, Moretti M (2010) Improving indicator species analysis by combining groups of sites. Oikos 119:1674–1684CrossRefGoogle Scholar
  23. Dormann CF (2007) Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Global Ecol Biogeog 16(2):129–138CrossRefGoogle Scholar
  24. Dormann CF, McPherson JM, Araújo MB et al (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30(5):609–628CrossRefGoogle Scholar
  25. Druehl L (2000) Pacific seaweeds. Harbour Publ, Madeira ParkGoogle Scholar
  26. Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible symmetrical approach. Ecol Monog 67(3):345–366Google Scholar
  27. Eastwood P, Souissi S, Rogers S et al (2006) Mapping seabed assemblages using comparative top-down and bottom-up classification approaches. Can J Fish Aquat Sci 63:1536–1548CrossRefGoogle Scholar
  28. Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27:861–874CrossRefGoogle Scholar
  29. Fenberg PB, Menge BA, Raimondi PT, Rivadeneira MM (2015) Biogeographic structure of the northeastern Pacific rocky intertidal: the role of upwelling and dispersal to drive patterns. Ecography 38(1):83–95CrossRefGoogle Scholar
  30. Ferrier S, Guisan A (2006) Spatial modelling of biodiversity at the community level. J Appl Ecol 43:393–404. doi: 10.1111/j.1365-2664.2006.01149.x CrossRefGoogle Scholar
  31. Franklin J (2009) Mapping species distributions—spatial inference and prediction. Cambridge University Press, New YorkGoogle Scholar
  32. Galili T (2015) dendextend: an R package for visualizing, adjusting, and comparing trees of hierarchical clustering. Bioinformatics. doi: 10.1093/bioinformatics/btv428 PubMedPubMedCentralGoogle Scholar
  33. Gauch HG (1982) Multivariate analysis in community ecology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  34. Gonzalez-Mirelis G, Lindegarth M (2012) Predicting the distribution of out-of-reach biotopes with decision trees in a Swedish marine protected area. Ecol Appl 22(8):2248–2264CrossRefPubMedGoogle Scholar
  35. Gould SF, Beeton NJ, Harris RM et al (2014) A tool for simulating and communicating uncertainty when modelling species distributions under future climates. Ecol Evol 4(24):4798–4811CrossRefPubMedPubMedCentralGoogle Scholar
  36. Gregr EJ, Ahrens AL, Perry IR (2012) Reconciling classifications of ecologically and biologically significant areas in the world’s oceans. Mar Pol 36(3):716–726CrossRefGoogle Scholar
  37. Halpern BS, Regan HM, Possingham HP, McCarthy MA (2006) Accounting for uncertainty in marine reserve design. Ecol Lett 9:2–11CrossRefPubMedGoogle Scholar
  38. Harris PT (2012a) Biogeography, benthic ecology, and habitat classification system. In: Harris PT, Baker EK (eds) Seafloor geomorphology as benthic habitat. Elsevier, San Francisco, pp 61–87CrossRefGoogle Scholar
  39. Harris PT (2012b) Surrogacy. In: Harris PT, Baker EK (eds) Seafloor geomorphology as benthic habitat. Elsevier, San Francisco, pp 93–102CrossRefGoogle Scholar
  40. Harris PT, Baker EK (2012) GeoHab atlas of seafloor geomorphic features and benthic habitats: synthesis and lessons learned. In: Harris PT, Baker EK (eds) Seafloor geomorphology as benthic habitat. Elsevier, San Francisco, pp 871–890CrossRefGoogle Scholar
  41. Hayes KR et al (2015) Identifying indicators and essential variables for marine ecosystems. Ecol Ind 57:409–419. doi: 10.1016/j.ecolind.2015.05.006 CrossRefGoogle Scholar
  42. Hewitt JE, Thrush SE, Legendre P, Funnell GA, Ellis J, Morrison M (2004) Mapping of marine soft-sediment communities: integrated sampling for ecological interpretation. Ecol Appl 14:1203–1216. doi: 10.1890/03-5177 CrossRefGoogle Scholar
  43. Jefferis G (2014) dendroextras: Extra functions to cut, label and colour dendrogram clusters. R package version 0.2.1. http://CRAN.R-project.org/package=dendroextras
  44. Johannessen D, Haggarty D, Pringle J (2004) Boundary definition for the central coast integrated management area. Can Sci Advis Sec Res Doc 2004/050Google Scholar
  45. Juffe-Bignoli D, Burgess ND, Bingham H et al (2014) Protected Planet Report 2014. UNEP-WCMC, CambridgeGoogle Scholar
  46. Jurasinski G and contributions from V. Retzer (2012). simba: a Collection of functions for similarity analysis of vegetation data. R package version 0.3-5. http://CRAN.R-project.org/package=simba
  47. Keitt TH, Bjørnstad ON, Dixon PM, Citron-Pousty S (2002) Accounting for spatial pattern when modeling organism-environment interactions. Ecography 25(5):616–625CrossRefGoogle Scholar
  48. Koleff P, Gaston KJ, Lennon JJ (2003) Measuring beta diversity for presence–absence data. J Anim Ecol 72:367–382CrossRefGoogle Scholar
  49. Kreft H, Jetz W (2010) A framework for delineating biogeographical regions based on species distributions. J Biogeog 37(11):2029–2053CrossRefGoogle Scholar
  50. Kühn I (2007) Incorporating spatial autocorrelation may invert observed patterns. Divers Distrib 13(1):66–69Google Scholar
  51. Langford WT, Gordon A, Bastin L (2009) When do conservation planning methods deliver? Quantifying the consequences of uncertainty. Ecol Inform 4:123–135CrossRefGoogle Scholar
  52. Last PR, Lyne VD, Williams A, Davies CR, Butler AJ, Yearsley GK (2010) A hierarchical framework for classifying seabed biodiversity with application to planning and managing Australia’s marine biological resources. Biol Cons 143(7):1675–1686CrossRefGoogle Scholar
  53. Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74(6):1659–1673CrossRefGoogle Scholar
  54. Legendre P, Legendre L (2012) Numerical ecology, 3rd ed. Developments in environmental modelling, vol 24. Elsevier, AmsterdamGoogle Scholar
  55. Lennon JJ (2000) Red-shifts and red herrings in geographical ecology. Ecography 23(1):101–113CrossRefGoogle Scholar
  56. Lessig V (1972) Comparing cluster analyses with cophenetic correlation. J Mark Res 9:82–84CrossRefGoogle Scholar
  57. Levings CD, Jamieson GS (1999) Evaluation of ecological criteria for selecting MPAs in pacific region: a proposed semi-quantitative approach. Can Stock Assess Sec Res Doc. 99/210Google Scholar
  58. Liaw A, Wiener M (2002) Classification and regression by randomForest. R News 2(3):18–22Google Scholar
  59. Lindenmayer DB, Margules CR, Botkin DB (2000) Indicators of biodiversity for ecologically sustainable forest management. Conserv Biol 14:941–950CrossRefGoogle Scholar
  60. Lombard AT, Cowling RM, Pressey RL, Rebelo AG (2003) Effectiveness of land classes as surrogates for species in conservation planning for the cape floristic region. Biol Cons 112(1–2):45–62CrossRefGoogle Scholar
  61. Lucas BG, Verrin S, Brown R (2007) Ecosystem overview: Pacific North Coast Integrated Management Area (PNCIMA). Can Tech Rep Fish Aquat Sci 2667:xiii + 104pGoogle Scholar
  62. Maloney N Heifetz J 1997 Movements of tagged sablefish, Anoplopoma fimbria, released in the eastern Gulf of AlaskaNOAA Technical Report, NMFS130115121Google Scholar
  63. McArdle BH, Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82:290–297CrossRefGoogle Scholar
  64. McCune B, Grace J (2002) Analysis of ecological communities. MjM Software Design, Gleneden BeachGoogle Scholar
  65. McFarlane G Saunders M 2006 Dispersion of juvenile sablefish, Anoplopoma fimbria, as indicating by tagging in Canadian watersNOAA Technical Report, NMFS130137150Google Scholar
  66. Milligan GW, Cooper MC (1985) An examination of procedures for determining the number of clusters in a data set. Psychometrika 50(2):159–179CrossRefGoogle Scholar
  67. Nelson TA, Gillanders SN, Harper J, Morris M (2011) Nearshore Aquatic Habitat Monitoring: a seabed imaging and mapping approach. J Coast Res 272:348–355. doi: 10.2112/jcoastres-d-10-00110.1 CrossRefGoogle Scholar
  68. Oksanen J, Guillaume Blanchet F, Kindt R et al (2014) vegan: community ecology package. R package version 2.3-0. http://CRAN.R-project.org/package=vegan
  69. Pimm SL et al (2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science 344(6187):1246752. doi: 10.1126/science.1246752 CrossRefPubMedGoogle Scholar
  70. Pitcher CR, Lawton P, Ellis N et al (2012) Exploring the role of environmental variables in shaping patterns of seabed biodiversity composition in regional-scale ecosystems. J Appl Ecol 49(3):670–679CrossRefGoogle Scholar
  71. Podani J, Csányi B (2010) Detecting indicator species: some extensions of the IndVal measure. Ecol Ind 10(6):1119–1124CrossRefGoogle Scholar
  72. Prasad AM, Iverson LR, Liaw A (2006) Newer classification and regression techniques: bagging and random forests for ecological prediction. Ecosystems 9:181–199CrossRefGoogle Scholar
  73. Proches S (2005) The world’s biogeographical regions: cluster analyses based on bat distributions. J. Biogeog. 32:607–614CrossRefGoogle Scholar
  74. R Core development TEAM 2014 R: a language and environment for statistical computing R foundation for statistical computing ViennaGoogle Scholar
  75. Robb CK (2014) Assessing the impact of human activities on British Columbia’s estuaries. PLoS One 9:e99578. doi: 10.1371/journal.pone.0099578 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Roberts CM, Branch G, Bustamante RH et al (2003) Application of ecological criteria in selecting marine reserves and developing reserve networks. Ecol Appl 13:S215–S228CrossRefGoogle Scholar
  77. Roberts DW (2015) labdsv: ordination and multivariate analysis for ecology. R package version 1.7-0. http://CRAN.R-project.org/package=labdsv
  78. Robin X, Turck N, Hainard A et al (2011) pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinf 12:77. doi: 10.1186/1471-2105-12-77 CrossRefGoogle Scholar
  79. Rodrigues ASL, Brooks TM (2007) Shortcuts for biodiversity conservation planning: the effectiveness of surrogates. Annu Rev Ecol Evol Syst 38:713–737. doi: 10.1146/annurev.ecolsys.38.091206.095737 CrossRefGoogle Scholar
  80. Roff JC, Taylor ME (2000) National frameworks for marine conservation—a hierarchical geophysical approach. Aquat Cons Mar Fresh Ecosys 10:209–223CrossRefGoogle Scholar
  81. Roff JC, Zacharias MA (2011) Marine conservation ecology. Earthscan, London, UKGoogle Scholar
  82. Roff JC, Taylor ME, Laughren J (2003) Geophysical approaches to the classification, delineation and monitoring of marine habitats and their communities. Aquat Cons Mar Fresh Ecosys 13(1):77–90CrossRefGoogle Scholar
  83. Rooper C, Zimmermann M (2007) A bottom-up methodology for integrating underwater video and acoustic mapping for seafloor substrate classification. Cont Shelf Res 27:947–957CrossRefGoogle Scholar
  84. Shumchenia EJ, King JW (2010) Comparison of methods for integrating biological and physical data for marine habitat mapping and classification. Cont Shelf Res 30:1717–1729. doi: 10.1016/j.csr.2010.07.007 CrossRefGoogle Scholar
  85. Sutcliffe PR, Klein CJ, Pitcher CR, Possingham HP (2015) The effectiveness of marine reserve systems constructed using different surrogates of biodiversity. Consr Biol 29(3):657–667CrossRefGoogle Scholar
  86. Tulloch VJ, Possingham HP, Jupiter SD et al (2013) Incorporating uncertainty associated with habitat data in marine reserve design. Biol Cons 162:41–51. doi: 10.1016/j.biocon.2013.03.003 CrossRefGoogle Scholar
  87. Tyberghein L, Verbruggen H, Pauly K et al (2012) Bio-ORACLE: a global environmental dataset for marine species distribution modeling. Global Ecol Biogeog. Available from Supporting information available at http://www.oracle.ugent.be/DATA/Other/Appendix.pdf
  88. Wei T (2013) corrplot: Visualization of a correlation matrix. R package version 0.73. http://CRAN.R-project.org/package=corrplot
  89. Wenger SJ, Som NA, Dauwalter DC et al (2013) Probabilistic accounting of uncertainty in forecasts of species distributions under climate change. Glob Chang Biol 19(11):3343–3354PubMedGoogle Scholar
  90. Williams PH, de Klerk HM, Crowe TM (1999) Interpreting biogeographical boundaries among Afrotropical birds: spatial patterns in richness gradients and species replacement. J Biogeog 26:459–474CrossRefGoogle Scholar
  91. Worm B, Barbier EB, Beaumont N (2006) Impacts of biodiversity loss on ocean ecosystem services. Science 314:787–790. doi: 10.1126/science.1132294 CrossRefPubMedGoogle Scholar
  92. WoRMS Editorial Board (2015) World register of marine specie. Available from http://www.marinespecies.org at VLIZ. Accessed 15 May 2015
  93. Zacharias MA, Howes DE, Harper JR, Wainwright P (1998) The British Columbia marine ecosystem classification: rationale, development, and verification. Coast Manage 26(2):105–124CrossRefGoogle Scholar

Copyright information

© Her Majesty the Queen in Right of Canada 2016

Authors and Affiliations

  • Emily M Rubidge
    • 1
    • 2
    Email author
  • Katie S. P. Gale
    • 1
    • 2
  • Janelle M. R. Curtis
    • 2
  1. 1.Institute of Ocean SciencesFisheries and Oceans CanadaSidneyCanada
  2. 2.Pacific Biological StationFisheries and Oceans CanadaNanaimoCanada

Personalised recommendations