Biodiversity and Conservation

, Volume 25, Issue 9, pp 1661–1675 | Cite as

Contributions of the mammal community, habitat structure, and spatial distance to dung beetle community structure

  • Juliano André Bogoni
  • Maurício Eduardo Graipel
  • Pedro Volkmer de Castilho
  • Felipe Moreli Fantacini
  • Vanessa Villanova Kuhnen
  • Micheli Ribeiro Luiz
  • Thiago Bernardes Maccarini
  • Cássio Batista Marcon
  • Christiane de Souza Pimentel Teixeira
  • Marcos Adriano Tortato
  • Fernando Z. Vaz-de-Mello
  • Malva Isabel Medina Hernández
Original Paper


Dung beetles feed and nest in mammal feces, are influenced by habitat quality and have limited dispersal ability. We hypothesized that dung beetle community structure is affected by mammal composition, habitat structure, and spatial distance, and that these predictors vary among the functional groups in communities. Dung beetles and mammals were sampled using pitfall traps and camera traps, respectively, at 15 Atlantic Forest sites between 2005 and 2013. Habitat structure was described using the point-quadrant method. We utilized descriptive ecological values and used variation partitioning to identify predictors of dung beetle community composition both as a whole, and after organizing the community into functional groups. We recorded 43 dung beetle species and 28 mammal species. Mammal and dung beetle species richness were positively correlated. Mammals and habitat explained the majority of the variation among dung beetle communities, and explanatory values varied substantially when using the functional group approach. Our results indicate that mammals are, indeed, important drivers of dung beetle community structure. Individually, or in combination with habitat structure, mammal composition explained 40 % of the total variation in dung beetle data, i.e., the abundance and species composition of dung beetles and mammals covary. However, herbivorous mammals, medium-sized mammals and omnivorous mammals numerically contributed more than did other groups to the explanation of variation in dung beetle guilds. Habitat structure was an important determinant for dung beetle functional group abundance, and spatial distance influenced covariation between dung beetles and mammals. Thus, the integrity and maintenance of ecological processes in the Atlantic Forest may be dependent on these groups, and further fragmentation, habitat loss and defaunation may increase the sensitivity of this already reduced and threatened biome.


Atlantic Forest Biodiversity Community ecology Defaunation Co-decline 



We thank the Education Ministry of Brazil (CAPES) for the scholarship to JAB, CNPq (Science and Technology Ministry of Brazil) for funding the project (Process 553880/2010), the Research Productivity Grant for MIMH (Proc. 303800/2010-0) and for FZVM (302997/2013-0). We are grateful to Pedro G. da Silva, Renata C. Campos, and Fernando V.B. Goulart for support during fieldwork and to Pedro G. da Silva, Luis M. Bini, Luciana Iannuzzi, Paulo C. A. Simões-Lopes, and Thiago C. Gomes for opinions and contributions. We thank the anonymous reviewers, and Eckehard Brockerhoff (the Associate Editor) for their important contributions.

Supplementary material

10531_2016_1147_MOESM1_ESM.doc (45 kb)
Supplementary material 1 (DOC 45 kb) Supplementary Material 1. Geographic locations of sites distributed among protected areas in subtropical Atlantic Forest, Santa Catarina, Brazil
10531_2016_1147_MOESM2_ESM.jpg (155 kb)
Supplementary material 2 (JPEG 155 kb) Supplementary Material 2. Experimental design for sampling medium to large-bodied mammals and dung beetles in 15 subtropical Atlantic Forest sites, Santa Catarina, Brazil
10531_2016_1147_MOESM3_ESM.xls (48 kb)
Supplementary material 3 (XLS 48 kb) Supplementary Material 3. Number and species of dung beetles (collected via pitfall-trap) per site in subtropical Atlantic Forest areas, Santa Catarina, Brazil. S1, S2 and S3: Reserva Particular do Patrimônio Natural (RPPN) Chácara Edith (RCE); sites S4 and S5: RPPN Caraguatá (RCA); S6: RPPN Rio das Lontras (RRL); S7, S8 and S9: Parque Estadual da Serra do Tabuleiro (PEST; Area A) in the municipality of Santo Amaro da Imperatriz (PTA); S10 and S11: PEST (Area B) in the municipality of São Bonifácio (PTB); S12 and S13: RPPN Leão da Montanha (RLM); and S14 and S15: Reserva Biológica Estadual do Aguaí (REA)
10531_2016_1147_MOESM4_ESM.jpg (1.3 mb)
Supplementary material 4 (JPEG 1306 kb) Supplementary Material 4. Rarefaction curves (with 95 % C.I.) of dung beetle species from 15 Brazilian subtropical Atlantic Forest sites. Site abbreviations are listed in Supplementary Materials 3
10531_2016_1147_MOESM5_ESM.xls (43 kb)
Supplementary material 5 (XLS 43 kb) Supplementary Material 5. Mammal species recorded via camera-trap in 15 subtropical Atlantic Forest sites in Santa Catarina, Brazil. Site and area abbreviations are listed in Supplementary Materials 3
10531_2016_1147_MOESM6_ESM.doc (52 kb)
Supplementary material 6 (DOC 52 kb) Supplementary Material 6. Forward selection results and variation partitioning for communities as a whole (predictors: mammals, habitat and distance; responses: dung beetles) in 15 Brazilian subtropical Atlantic Forest sites
10531_2016_1147_MOESM7_ESM.doc (100 kb)
Supplementary material 7 (DOC 100 kb) Supplementary Material 7. Variation partitioning values for functional groups (statistically significant data only are shown in Fig. 4). Dung beetle trophic guilds are denoted as follows: C = coprophagous; N = necrophagous; and G = generalist. Dung beetle body size is denoted as: L = large; M = medium; and S = small. Dung beetle relocation resource behavior is denoted as: P = paracoprid; T = telecoprid; and E = endocoprid


  1. Almeida SSP, Louzada JNC (2009) Estrutura da comunidade de Scarabaeinae (Scarabaeidae: Coleoptera) em fitofisionomias do Cerrado e sua importância para a conservação. Neotrop Entomol 38(1):32–43. doi: 10.1590/S1519-566X2009000100003 CrossRefGoogle Scholar
  2. Barlow J, Gardner TA, Araujo IS et al (2007) Quantifying the biodiversity value of tropical primary, secondary and plantation Forest. Proc Natl Acad Sci 104(47):18555–18560. doi: 10.1073/pnas.0703333104 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Barlow J, Louzada J, Parry L et al (2010) Improving the design and management of forest strips in human-dominated tropical landscapes: a field test on Amazonian dung beetles. J Appl Ecol 47:779–788. doi: 10.1111/j.1365-2664.2010.01825.x CrossRefGoogle Scholar
  4. Barnosky AD, Hadly EA, Bascompte J et al (2012) Approaching a state shift in Earth’s biosphere. Nature 486:52–58. doi: 10.1038/nature11018 CrossRefPubMedGoogle Scholar
  5. Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632CrossRefPubMedGoogle Scholar
  6. Bogoni JA, Hernández MIM (2014) Attractiveness of native mammals feces of different trophic guilds to dung beetles (Coleoptera: Scarabaeinae). J Insect Sci. doi: 10.1093/jisesa/ieu161 PubMedGoogle Scholar
  7. Bogoni JA, Cherem JJ, Giehl ELH et al (2016) Landscape features lead to shifts in communities of medium- to large-bodied mammals in subtropical Atlantic Forest. J Mammal. doi: 10.1093/jmammal/gyv215 Google Scholar
  8. Borcard D, Legendre P, Avois-Jacquet C, Tuomisto H (2004) Dissecting the spatial structure of ecological data at multiple scales. Ecology 85(7):1826–1832CrossRefGoogle Scholar
  9. Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, New YorkCrossRefGoogle Scholar
  10. Brocardo CR, Ziparro VB, de Lima RAF, Guevara R, Galetti M (2013) No changes in seedling recruitment when terrestrial mammals are excluded in a partially defaunated Atlantic rainforest. Biol Conserv 163:107–114. doi: 10.1016/j.biocon.2013.04.024 CrossRefGoogle Scholar
  11. Brower JE, Zar J, von Ende CN (1998) Field and laboratory methods for general ecology, 4th edn. McGraw-Hill, DubuqueGoogle Scholar
  12. Cáceres NC, Cherem JJ, Graipel ME (2007) Distribuição geográfica de mamíferos terrestres na região sul do Brasil. Ciência & Ambiente 35:167–180Google Scholar
  13. Campos RC, Hernández MIM (2013) Dung beetles assemblages (Coleoptera, Scarabaeinae) in Atlantic Forest fragments in southern Brazil. Rev Bras Entomol 57(1):47–54. doi: 10.1590/S0085-56262013000100008 CrossRefGoogle Scholar
  14. Canale GR, Peres CA, Guidorizzi CE et al (2012) Pervasive defaunation of forest remnants in a tropical biodiversity hotspot. PLos One. doi: 10.1371/journal.pone.0041671 Google Scholar
  15. Cardinale BJ, Duffy E, Gonzalez A et al (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67. doi: 10.1038/nature11148 CrossRefPubMedGoogle Scholar
  16. Cassano CR, Barlow J, Pardini R (2012) Large mammals in an agroforestry mosaic in the Brazilian Atlantic Forest. Biotropica 44(6):818–825. doi: 10.1111/j.1744-7429.2012.00870.x CrossRefGoogle Scholar
  17. Colwell RK, Chao A, Gotelli NJ et al (2012) Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J Plant Ecol. 5(1):3–21. doi: 10.1093/jpe/rtr044 CrossRefGoogle Scholar
  18. Culot L, Bovi E, Vaz-de-Mello FZ, Guevara R, Galetti M (2013) Selective defaunation affects dung beetle communities in continuous Atlantic rainforest. Biol Conserv 163:79–89. doi: 10.1016/j.biocon.2013.04.004 CrossRefGoogle Scholar
  19. da Silva PG, Hernández MIM (2014) Local and regional effects on community structure of dung beetles in a mainland-island scenario. PLos One 9(10):e111883CrossRefPubMedPubMedCentralGoogle Scholar
  20. da Silva PG, Hernández MIM (2015) Spatial patterns of movement of dung beetle species in a tropical forest suggest a new trap spacing for dung beetle biodiversity studies. PLos One 10(5):e0126112CrossRefPubMedPubMedCentralGoogle Scholar
  21. Davis ALV (1996) Community organization of dung beetles (Coleoptera: Scarabaeidae): differences in body size and functional group structure between habitats. Afr J Ecol 34:258–275CrossRefGoogle Scholar
  22. Dirzo R, Young HS, Galetti M et al (2014) Defaunation in the anthropocene. Science 345:401–406CrossRefPubMedGoogle Scholar
  23. Dray S, Legendre P, Blanchet G (2013) Packfor: forward selection with permutation (Canoco p.46). R package version 0.0-8/r109.
  24. Eduardo AA (2011) Spatial patterns of mammalian diversity in a fragmented landscape in southern Brazil. Rev Bras Biociênc 9(2):252–255Google Scholar
  25. Espartosa KD, Pinotti BT, Pardini R (2011) Performance of camera trapping and track counts for surveying large mammals in rainforest remnants. Biodivers Conserv 20:2815–2829CrossRefGoogle Scholar
  26. Estrada A, Halffter G, Coates-Estrada R, Meritt DA Jr (1993) Dung beetles attracted to mammalian herbivore (Alouatta palliata) and omnivore (Nasua narica) dung in the tropical rainforest of Los Tuxtlas Mexico. J Trop Ecol 9:45–54CrossRefGoogle Scholar
  27. Favila ME, Halffter G (1997) The use of indicator groups for measuring biodiversity as related to community structure and function. Acta Zool Mex 72:1–25Google Scholar
  28. Filgueiras BKC, Liberal CN, Aguiar CDM et al (2009) Attractivity of omnivore carnivore and herbivore mammalian dung to Scarabaeinae (Coleoptera Scarabaeidae) in a tropical Atlantic Forest remnant. Rev Bras Entomol 53:422–427CrossRefGoogle Scholar
  29. Foley JA, DeFries R, Asner GP et al (2005) Global consequences of land use. Science 309:570–574CrossRefPubMedGoogle Scholar
  30. Galetti M, Dirzo R (2013) Ecological and evolutionary consequences of living in a defaunated world. Biol Conserv 163:1–6CrossRefGoogle Scholar
  31. Gardner TA, Barlow J, Araujo IS et al (2008a) The cost-effectiveness of biodiversity surveys in tropical Forests. Ecol Lett 11:139–150CrossRefPubMedGoogle Scholar
  32. Gardner TA, Hernández MIM, Barlow J, Peres CA (2008b) Understanding the biodiversity consequences of habitat change: the value of secondary and plantation forests for Neotropical dung beetles. J Appl Ecol 45:883–893CrossRefGoogle Scholar
  33. Goulart FVB, Cáceres NC, Graipel ME et al (2009) Habitat selection by large mammals in a southern Brazilian Atlantic Forest. Mamm Biol 74:182–190Google Scholar
  34. Halffter G, Arellano L (2002) Response of dung beetle diversity to human-induced changes in a tropical landscape. Biotropica 34(1):144–154CrossRefGoogle Scholar
  35. Halffter G, Edmonds WD (1982) The nesting behavior of dung beetles (Scarabaeinae): an ecologic and evolutive approach. Man and Biosphere Program Unesco, Mexico CityGoogle Scholar
  36. Halffter G, Favila ME (1993) The Scarabaeinae (Insecta: Coleoptera) an animal group for analyzing, inventorying, and monitoring biodiversity in tropical Rainforest and modified landscapes. Biol Int 27:15–21Google Scholar
  37. Halffter G, Matthews EG (1966) The natural history of dung beetles of the subfamily Scarabaeinae (Coleoptera, Scarabaeidae). Folia Entomol Mex 12(14):1–312Google Scholar
  38. Hanski I, Cambefort Y (eds) (1991) Dung beetle ecology. Princeton University Press, New JerseyGoogle Scholar
  39. Hernández MIM (2002) The night and day of dung beetles (Coleoptera: Scarabaeinae) in the Serra do Japi, Brazil: elytra color related to daily activity. Rev Bras Entomol 46(4):597–600CrossRefGoogle Scholar
  40. Hernández MIM (2007) Besouros escarabeíneos (Coleoptera: Scarabaeidae) da caatinga paraibana, Brasil. Oecol Bras 11(3):356–364CrossRefGoogle Scholar
  41. Hernández MIM, Vaz-de-Mello FZ (2009) Seasonal and spatial species richness variation of dung beetles (Coleoptera: Scarabaeidae s. str.) in the Atlantic Forest of southern Brazil. Rev Bras Entomol 53(4):607–613CrossRefGoogle Scholar
  42. Hernández MIM, Monteiro LR, Favila ME (2011) The role of body size and shape in understanding competitive interactions within a community of Neotropical dung beetles. J Insect Sci 11:13PubMedPubMedCentralGoogle Scholar
  43. Hernández MIM, Barreto PSCS, Costa VH et al (2014) Response of a dung beetle assemblage along a reforestation gradient in Restinga forest. J Insect Conserv 18:539–546CrossRefGoogle Scholar
  44. Holyoak M, Leibold MA, Holt RD (eds) (2005) Metacommunities: spatial dynamics and ecological communities. University of Chicago Press, ChicagoGoogle Scholar
  45. Instituto Brasileiro de Geografia e Estatística (IBGE) (1992) Manual técnico da vegetação brasileira. Departamento de Recursos Naturais e Estudos Ambientais, Rio de JaneiroGoogle Scholar
  46. Kurten EL (2013) Cascading effects of contemporaneous defaunation on tropical forests communities. Biol Conserv 163:22–32CrossRefGoogle Scholar
  47. Larsen T, Forsyth A (2005) Trap spacing and transect design for dung beetle biodiversity studies. Biotropica 37:322–325CrossRefGoogle Scholar
  48. Larsen T, Lopera A, Forsyth A (2006) Extreme trophic and habitat specialization by peruvian dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae). Coleopt Bull 60:315–324CrossRefGoogle Scholar
  49. Legendre P, Legendre L (1998) Numerical ecology. Elsevier, AmsterdamGoogle Scholar
  50. Legendre P, Borcard D, Roberts DW (2012) Variation partitioning involving orthogonal spatial eigen function submodels. Ecology 93(5):1234–1240CrossRefPubMedGoogle Scholar
  51. Lyra-Jorge MC, Ciochetti G, Pivello VR, Meirelles ST (2008) Comparing methods for sampling large- and medium-sized mammals: camera traps and track plots. Eur J Wildl Res 54:739–744CrossRefGoogle Scholar
  52. Magioli M, Ribeiro MC, Ferraz KMPMB, Rodrigues MG (2015) Thresholds in the relationship between functional diversity and patch size for mammals in the Brazilian Atlantic Forest. Anim Conserv 18(6):499–511CrossRefGoogle Scholar
  53. Marsh CJ, Louzada J, Beiroz W, Ewers RM (2013) Optimising bait for pitfall trapping of Amazonian dung beetles (Coleoptera: Scarabaeinae). PLoS One 8(8):e73147. doi: 10.1371/journal.pone.0073147 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Nichols E, Gardner TA, Peres CA, Spector S, Network The Scarabaeinae Research (2009) Co-declining mammals and dung beetles: an impending ecological cascade. Oikos 118:481–487CrossRefGoogle Scholar
  55. Nichols E, Uriarte M, Bunker DE et al (2013a) Trait-dependent response of dung beetles populations to tropical forest conversion at local and regional scales. Ecology 94(1):180–189CrossRefPubMedGoogle Scholar
  56. Nichols E, Uriarte M, Peres CA et al (2013b) Human-induced trophic cascades along the fecal detritus pathway. PLos One 8(10):e75819CrossRefPubMedPubMedCentralGoogle Scholar
  57. O’Connell AF, Nichols JD, Karanth U (eds) (2011) Camera traps in animal ecology. Springer, New YorkGoogle Scholar
  58. Oksanen J, Blanchet G, Kindt R et al. (2013) Vegan: community ecology package. R package version 2.0-7.
  59. Paglia AP, da Fonseca GAB, Rylands AB et al (2012) Annotated checklist of Brazilian mammals, 2nd edn. Occas Pap Conserv Biol 6:1–76Google Scholar
  60. Pardini R, Bueno AA, Gardner TA, Prado PI, Metzger JP (2010) Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes. PLos One 5(10):e13666CrossRefPubMedPubMedCentralGoogle Scholar
  61. Parera A (2002) Los mamíferos de la argentina y la región Austral de Sudamérica. El Ateneo, Buenos AiresGoogle Scholar
  62. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644CrossRefGoogle Scholar
  63. Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87(10):2614–2625CrossRefPubMedGoogle Scholar
  64. Peters RH (1983) The ecological implications of body size. Cambridge University Press, New YorkCrossRefGoogle Scholar
  65. Pimm SL (1982) Food webs. Chapman and Hall, ChicagoCrossRefGoogle Scholar
  66. R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing.
  67. Reis NR, Peracchi AL, Pedro WA, Lima IP (eds) (2006) Mamíferos do Brasil. Editora da Universidade Estadual de Londrina, LondrinaGoogle Scholar
  68. Schmidt BR (2005) Monitoring the distribution of pond-breeding amphibians when species are detected imperfectly. Aquat Conserv 15:681–692CrossRefGoogle Scholar
  69. Schmitz OJ, Hawlena D, Trussell GC (2010) Predator control of ecosystem nutrient dynamics. Eco Lett 13:1199–1209CrossRefGoogle Scholar
  70. Slade EM, Villanueva MDJ, Lewis OT (2007) Experimental evidence for the effects of dung beetle functional group richness and composition on ecosystem function in a tropical forest. J Anim Ecol 76:1094–1104CrossRefPubMedGoogle Scholar
  71. Slade EM, Mann DJ, Lewis OT (2011) Biodiversity and ecosystem function of tropical forest dung beetles under contrasting logging regimes. Biol Conserv 144:166–174CrossRefGoogle Scholar
  72. Wiederholt R, Fernandez-Duque E, Diefenbach DR, Rudran R (2010) Modeling the impacts of hunting on the population dynamics of red howler monkeys (Alouatta seniculus). Ecol Model 221:2482–2490CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Juliano André Bogoni
    • 1
  • Maurício Eduardo Graipel
    • 1
  • Pedro Volkmer de Castilho
    • 2
  • Felipe Moreli Fantacini
    • 1
  • Vanessa Villanova Kuhnen
    • 1
  • Micheli Ribeiro Luiz
    • 3
  • Thiago Bernardes Maccarini
    • 4
  • Cássio Batista Marcon
    • 1
  • Christiane de Souza Pimentel Teixeira
    • 5
  • Marcos Adriano Tortato
    • 6
  • Fernando Z. Vaz-de-Mello
    • 7
  • Malva Isabel Medina Hernández
    • 1
  1. 1.Departamento de Ecologia e ZoologiaUniversidade Federal de Santa CatarinaFlorianópolisBrazil
  2. 2.Curso de Pós-Graduação em Engenharia FlorestalUniversidade do Estado de Santa CatarinaLagunaBrazil
  3. 3.Programa de Pós-Graduação em Gestão de Recursos NaturaisUniversidade do Extremo Sul CatarinenseCriciúmaBrazil
  4. 4.Programa de Pós-Graduação em Ecologia e Conservação da BiodiversidadeUniversidade Federal do Mato Grosso Do SulCampo GrandeBrazil
  5. 5.Curso de Graduação em Gestão AmbientalCentro Universitário Estácio de SáSão JoséBrazil
  6. 6.Programa de Pós-Graduação em Ecologia e ConservaçãoUniversidade Federal do ParanáCuritibaBrazil
  7. 7.Departamento de Biologia e Zoologia, Instituto de BiocienciasUniversidade Federal do Mato GrossoCuiabáBrazil

Personalised recommendations