Biodiversity and Conservation

, Volume 25, Issue 9, pp 1605–1624 | Cite as

Hidden crown jewels: the role of tree crowns for bryophyte and lichen species richness in sycamore maple wooded pastures

  • Thomas KiebacherEmail author
  • Christine Keller
  • Christoph Scheidegger
  • Ariel Bergamini
Original Paper


Tree crowns typically cover the vast majority of the surface area of trees, but they are rarely considered in diversity surveys of epiphytic bryophytes and lichens, especially in temperate Europe. Usually only stems are sampled. We assessed the number of bryophyte and lichen species on stems and in crowns of 80 solitary sycamore maple trees (Acer pseudoplatanus) at six sites in wooded pastures in the northern Alps. The total number of species detected per tree ranged from 13 to 60 for bryophytes, from 25 to 67 for lichens, and from 42 to 104 for bryophytes and lichens considered together. At the tree level, 29 % of bryophyte and 61 % of lichen species were recorded only in the crown. Considering all sampled trees together, only 4 % of bryophyte, compared to 34 % of lichen species, were never recorded on the stem. Five out of 10 red-listed bryophyte species and 29 out of 39 red-listed lichen species were more frequent in crowns. The species richness detected per tree was unexpectedly high, whereas the proportion of exclusive crown species was similar to studies from forest trees. For bryophytes, in contrast to lichens, sampling several stems can give a good estimation of the species present at a site. However, frequency estimates may be highly biased for lichens and bryophytes if crowns are not considered. Our study demonstrates that tree crowns need to be considered in research on these taxa, especially in biodiversity surveys and in conservation tasks involving lichens and to a lesser degree also bryophytes.


Acer pseudoplatanus Alps Biodiversity Epiphytes Red-listed species Tayloria rudolphiana 



Major thanks are given to the Bristol Foundation, chaired by Mario Broggi, for providing major funding for this project. Furthermore, we acknowledge the Federal Office for the Environment (FOEN) and the Nature Park Diemtigtal for financial support. Sincere thanks are given to L. Hedenäs, H. Köckinger, N. Schnyder, C. Schubiger and E. Urmi for the revision of ambiguous bryophyte specimens, to H. Hofmann and C. Schröck for providing information about Tayloria rudolphiana, to J. Ecker and J. Betsch for their help in the field, to A. Bedolla, K. Ecker, H. and M. Küchler, M. Meier and S. Stofer for their help with databases, GIS, Vegedaz and French language translations, to H. Sonntag at Nature Park Karwendel, to L. Waser for the calculation of CIR images, and to the Tiris-services of the Tyrol province and the Sagis-services of the Salzburg province for the provision of Geo data.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10531_2016_1144_MOESM1_ESM.pdf (737 kb)
Supplementary material 1 (PDF 737 kb)


  1. ApSimon HM, Warren RF, Wilson JJN (1994) The abatement strategies assessment model-ASAM: Applications to reductions of sulphur dioxide emissions across Europe. Atmos Environ 28:649–663. doi: 10.1016/1352-2310(94)90042-6 CrossRefGoogle Scholar
  2. Aptroot A (1997) Lichen biodiversity in Papua New Guinea, with report of 173 species on one tree. Bibl Lichenol 68:203–213Google Scholar
  3. Barker M, Pinard M (2001) Forest canopy research: sampling problems, and some solutions. In: Linsenmair KE, Davis AJ, Fiala B, Speight MR (eds) Tropical Forest Canopies: ecology and management. Springer, New York, pp 23–38CrossRefGoogle Scholar
  4. Barkman JJ (1958) Phytosociology and ecology of cryptogamic epiphytes, including a taxonomic survey and description of their vegetation units in Europe. Van Gorcum & Comp, AssenGoogle Scholar
  5. Bates D, Maechler M, Bolker B, Walker S (2015) lme4: linear mixed-effects models using Eigen and S4. R package version 1.1-8. Accessed June 2015
  6. Baumgartner A, Reichel E, Weber G (1983) Der Wasserhaushalt der Alpen. Oldenbourg, MunichGoogle Scholar
  7. Boch S, Müller J, Prati D, Blaser S, Fischer M (2013a) Up in the tree—the overlooked richness of bryophytes and lichens in tree crowns. PLoS One. doi: 10.1371/journal.pone.0084913 Google Scholar
  8. Boch S, Prati D, Hessenmöller D, Schulze ED, Fischer M (2013b) Richness of lichen species, especially of threatened ones, is promoted by management methods furthering stand continuity. PLoS One. doi: 10.1371/journal.pone.0055461 Google Scholar
  9. Boudreault C, Gauthier S, Bergeron Y (2000) Epiphytic lichens and bryophytes on Populus tremuloides along a chronosequence in the southwestern boreal forest of Quebec, Canada. Bryologist 103:725–738CrossRefGoogle Scholar
  10. Buckley HL (2011) Isolation affects tree-scale epiphytic lichen community structure on New Zealand mountain beech trees. J Veg Sci 22:1062–1071. doi: 10.1111/j.1654-1103.2011.01315.x CrossRefGoogle Scholar
  11. Caruso A, Öckinger E, Winqvist C, Ahnström J (2015) Different patterns in species richness and community composition between trees, plants and epiphytic lichens in semi-natural pastures under agri-environment schemes. Biodivers Conserv 24:1729–1742. doi: 10.1007/s10531-015-0892-x CrossRefGoogle Scholar
  12. Clauzade G, Roux C, Houmeau JM, Raimbault P (1985) Likenoj de Okcidenta Europo: ilustrita determinlibro. Bull Soc Bot Centre-Ouest, nouv sér, num spéc 7:1–893Google Scholar
  13. Clerc P, Truong C (2012) Catalogue des lichens de Suisse. [Version 2.0, 11.06.2012]. Accessed 12 Aug 2015
  14. Coote L, Smith GF, Kelly DL, O’Donoghue S, Dowding P, Iremonger S, Mitchell FJG (2008) Epiphytes of sitka spruce (Picea sitchensis) plantations in Ireland and the effects of open spaces. Biodivers Conserv 17:953–968. doi: 10.1007/s10531-007-9302-3 CrossRefGoogle Scholar
  15. Council of the European Commission (1992) Council directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Off J Eur Communities Ser L 206:7–49Google Scholar
  16. Dittrich S, Hauck M, Schweigatz D, Dörfler I, Hühne R, Bade C, Jacob M, Leuschner C (2013) Separating forest continuity from tree age effects on plant diversity in the ground and epiphyte vegetation of a Central European mountain spruce forest. Flora 208:238–246CrossRefGoogle Scholar
  17. Ellis CJ (2012) Lichen epiphyte diversity: a species, community and trait-based review. Perspect Plant Ecol Evol Syst 14:131–152. doi: 10.1016/j.ppees.2011.10.001 CrossRefGoogle Scholar
  18. Frahm JP (1998) Moose als Bioindikatoren. Quelle & Meyer, WiesbadenGoogle Scholar
  19. Frahm JP, Frey W (1992) Moosflora, 3rd edn. Ulmer, StuttgartGoogle Scholar
  20. Friedel A, Oheimb GV, Dengler J, Härdtle W (2006) Species diversity and species composition of epiphytic bryophytes and lichens—a comparison of managed and unmanaged beech forests in NE Germany. Feddes Repert 117:172–185. doi: 10.1002/fedr.200511084 CrossRefGoogle Scholar
  21. Fritz Ö (2009) Vertical distribution of epiphytic bryophytes and lichens emphasizes the importance of old beeches in conservation. Biodivers Conserv 18:289–304. doi: 10.1007/s10531-008-9483-4 CrossRefGoogle Scholar
  22. Fritz Ö, Gustafsson L, Larsson K (2008) Does forest continuity matter in conservation?—A study of epiphytic lichens and bryophytes in beech forests of southern Sweden. Biol Conserv 141:655–668. doi: 10.1016/j.biocon.2007.12.006 CrossRefGoogle Scholar
  23. Fritz Ö, Niklasson M, Churski M (2009a) Tree age is a key factor for the conservation of epiphytic lichens and bryophytes in beech forests. Appl Veg Sci 12:93–106. doi: 10.1111/j.1654-109X.2009.01007.x CrossRefGoogle Scholar
  24. Fritz Ö, Brunet J, Caldiz M (2009b) Interacting effects of tree characteristics on the occurrence of rare epiphytes in a Swedish beech forest area. Bryologist 112:488–505. doi: 10.1639/0007-2745-112.3.488 CrossRefGoogle Scholar
  25. Grims F (1999) Die Laubmoose Österreichs, Catalogus Florae Austriae II, Bryophyten (Moose) 1, Musci (Laubmoose). Österreichische Akademie der Wissenschaften, ViennaGoogle Scholar
  26. Hale ME (1952) Vertical distribution of cryptogams in a virgin forest in Wisconsin. Ecology 33:398–406CrossRefGoogle Scholar
  27. Hale ME (1965) Vertical distribution of cryptogams in a red maple swamp in Connecticut. Bryologist 68:193–197. doi: 10.2307/3241012 CrossRefGoogle Scholar
  28. Herzig R, Urech M (1991) Flechten als Bioindikatoren. Bibl Lichenol 43:1–283Google Scholar
  29. Heylen O, Hermy M, Schrevens E (2005) Determinants of cryptogamic epiphyte diversity in a river valley (Flanders). Biol Conserv 126:371–382. doi: 10.1016/j.biocon.2005.06.014 CrossRefGoogle Scholar
  30. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi: 10.1002/joc.1276 CrossRefGoogle Scholar
  31. Hill MO, Bell N, Bruggeman-Nannenga M, Brugues M, Cano MJ, Enroth J, Flatberg KI, Frahm JP, Gallego MT, Garilleti R, Guerra J, Hedenas L, Holyoak DT, Ignatov MS, Lara F, Mazimpaka V, Munoz J, Söderström L (2006) An annotated checklist of the mosses of Europe and Macaronesia. J Bryol 28:198–267. doi: 10.1179/174328206X119998 CrossRefGoogle Scholar
  32. Hilmo O, Gauslaa Y, Rocha L, Lindmo S, Holien H (2013) Vertical gradients in population characteristics of canopy lichens in boreal rainforests of Norway. Botany 91:814–821. doi: 10.1139/cjb-2013-0105 CrossRefGoogle Scholar
  33. Hofmann H, Müller N, Schnyder N (2006) Merkblätter Artenschutz—Moose. Durch die Natur- und Heimatschutzverordnung schweizweit geschützte Moose (NHV, Anhang 2). Accessed 30 July 2015
  34. Hylander K, Dynesius M, Jonsson BG, Nilsson C (2005) Substrate form determines the fate of bryophytes in riparian buffer strips. Ecol Appl 15:674–688. doi: 10.1890/04-0570 CrossRefGoogle Scholar
  35. Ignatova EA, Ignatov MS (2011) The genus Thamnobryum (Neckeraceae, Bryophyta) in Russia. Arctoa 20:137–151CrossRefGoogle Scholar
  36. IUCN (2001) IUCN red list categories and criteria version 3.1. Gland, CambridgeGoogle Scholar
  37. Jairus K, Lõhmus A, Lõhmus P (2009) Lichen acclimatization on retention trees: a conservation physiology lesson. J Appl Ecol 46:930–936. doi: 10.1111/j.1365-2664.2009.01672.x CrossRefGoogle Scholar
  38. Jarman SJ, Kantvilas G (1995) Epiphytes on an old huon pine tree (Lagarostrobos franklinii) in Tasmanian rainforest. New Zeal J Bot 33:65–78. doi: 10.1080/0028825X.1995.10412944 CrossRefGoogle Scholar
  39. Johansson V, Snäll T, Johansson P, Ranius T (2010) Detection probability and abundance estimation of epiphytic lichens based on height-limited surveys. J Veg Sci 21:332–341. doi: 10.1111/j.1654-1103.2009.01146.x CrossRefGoogle Scholar
  40. Johansson V, Ranius T, Snäll T (2012) Epiphyte metapopulation dynamics are explained by species traits, connectivity, and patch dynamics. Ecology 93:235–241. doi: 10.1890/11-0760.1 CrossRefPubMedGoogle Scholar
  41. Jüriado I, Liira J, Paal J, Suija A (2009) Tree and stand level variables influencing diversity of lichens on temperate broad-leaved trees in boreo-nemoral floodplain forests. Biodivers Conserv 18:105–125. doi: 10.1007/s10531-008-9460-y CrossRefGoogle Scholar
  42. Kenkel NC, Bradfield GE (1986) Epiphytic vegetation on Acer macrophyllum: a multivariate study of species-habitat relationships. Vegetatio 68:43–53. doi: 10.1007/BF00031579 Google Scholar
  43. Kranner I, Beckett R, Hochman A, Nash TH (2008) Desiccation-tolerance in lichens: a review. Bryologist 111:576–593. doi: 10.1639/0007-2745-111.4.576 CrossRefGoogle Scholar
  44. Kumar L, Skidmore AK, Knowles E (1997) Modelling topographic variation in solar radiation in a GIS environment. Int J Geogr Inf Sci 11:475–497. doi: 10.1080/136588197242266 CrossRefGoogle Scholar
  45. Kuznetsova A, Brockhoff PB, Christensen RHB (2015) LmerTest: Tests for random and fixed effects for linear mixed effect models. R package, version 2.0-29. Accessed June 2015
  46. Lie MH, Arup U, Grytnes JA, Ohlson M (2009) The importance of host tree age, size and growth rate as determinants of epiphytic lichen diversity in boreal spruce forests. Biodivers Conserv 18:3579–3596. doi: 10.1007/s10531-009-9661-z CrossRefGoogle Scholar
  47. Löbel S, Snäll T, Rydin H (2006) Species richness patterns and metapopulation processes—evidence from epiphyte communities in boreo-nemoral forests. Ecography 29:169–182. doi: 10.1111/j.2006.0906-7590.04348.x CrossRefGoogle Scholar
  48. Löbel S, Snäll T, Rydin H (2009) Mating system, reproduction mode and diaspore size affect metacommunity diversity. J Ecol 97:176–185. doi: 10.1111/j.1365-2745.2008.01459.x CrossRefGoogle Scholar
  49. Lõhmus P, Rosenvald R, Lõhmus A (2006) Effectiveness of solitary retention trees for conserving epiphytes: differential short-term responses of bryophytes and lichens. Can J For Res 36:1319–1330. doi: 10.1139/x06-032 CrossRefGoogle Scholar
  50. Lüth M (2010) Ökologie und Vergesellschaftung von Orthotrichum rogeri. Herzogia 23:121–149CrossRefGoogle Scholar
  51. Marmor L, Tõrra T, Saag L, Randlane T (2011) Effects of forest continuity and tree age on epiphytic lichen biota in coniferous forests in Estonia. Ecol Indic 11:1270–1276. doi: 10.1016/j.ecolind.2011.01.009 CrossRefGoogle Scholar
  52. Marmor L, Tõrra T, Saag L, Leppik E, Randlane T (2013) Lichens on Picea abies and Pinus sylvestris—from tree bottom to the top. Lichenol 45:51–63. doi: 10.1017/S0024282912000564 CrossRefGoogle Scholar
  53. McCune B, Amsberry KA, Camacho FJ, Clery S, Cole C, Emerson C, Felder G, French P, Greene D, Harris R, Hutten M, Larson B, Lesko M, Majors S, Markwell T, Parker GG, Pendergrass K, Peterson EB, Peterson ET, Platt J, Proctor J, Rambo T, Rosso A, Shaw D, Turner R, Widmer M (1997) Vertical profile of epiphytes in a Pacific Northwest old-growth forest. Northwest Sci 71:145–152Google Scholar
  54. Milne J, Louwhoff S (1999) Vertical distribution of bryophytes and lichens on a myrtle beech, Nothofagus cunninghamii (Hook.) Oerst. Hikobia 13:23–30Google Scholar
  55. Mylona S (1996) Sulphur dioxide emissions in Europe 1800-1991 and their effect on sulphur concentrations and depositions. Tellus 48:662–689. doi: 10.1034/j.1600-0889.1996.t01-2-00005.x CrossRefGoogle Scholar
  56. Nascimbene J, Marini L, Nimis PL (2010) Epiphytic lichen diversity in old-growth and managed Picea abies stands in Alpine spruce forests. For Ecol Manag 260:603–609. doi: 10.1016/j.foreco.2010.05.016 CrossRefGoogle Scholar
  57. Nebel M, Philippi G (2000) Die Moose Baden-Württembergs. Bd 1. Ulmer, StuttgartGoogle Scholar
  58. Nebel M, Philippi G (2001) Die Moose Baden-Württembergs. Bd 2. Ulmer, StuttgartGoogle Scholar
  59. Nebel M, Philippi G (2005) Die Moose Baden-Württembergs. Bd 3. Ulmer, StuttgartGoogle Scholar
  60. Paltto H, Nordberg A, Nordén B, Snäll T (2011) Development of secondary woodland in oak wood pastures reduces the richness of rare epiphytic lichens. PLoS One 6:1–8. doi: 10.1371/journal.pone.0024675 CrossRefGoogle Scholar
  61. Pearson LC (1969) Influence of temperature and humidity on distribution of lichens in a Minnesota bog. Ecology 50:740–746CrossRefGoogle Scholar
  62. Peterson EB, McCune B (2001) Diversity and succession of epiphytic macrolichen communities in low-elevation managed conifer forests in Western Oregon. J Veg Sci 12:511–524. doi: 10.2307/3237003 CrossRefGoogle Scholar
  63. Ranius T, Johansson P, Berg N, Niklasson M (2008) The influence of tree age and microhabitat quality on the occurrence of crustose lichens associated with old oaks. J Veg Sci 19:653–662. doi: 10.3170/2008-8-18433 CrossRefGoogle Scholar
  64. Rasmussen L (1975) The bryophytic epiphyte vegetation in the forest, Slotved Skov, northern Jutland. Linbergia 3:15–38Google Scholar
  65. Romanski J, Pharo EJ, Kirkpatrick JB (2011) Epiphytic bryophytes and habitat variation in montane rainforest, Peru. Bryologist 114:720–731. doi: 10.1639/0007-2745-114.4.720 CrossRefGoogle Scholar
  66. Rose F (1991) The importance of old trees, including pollards, for lichen and bryophyte epiphytes. In: Read HJ (ed) Pollard and veteran tree management. Corporation of London, London, pp 28–29Google Scholar
  67. Saag L, Saag A, Randlane T (2009) World survey of the genus Lepraria (Stereocaulaceae, lichenized Ascomycota). Lichenologist 41:25–60CrossRefGoogle Scholar
  68. Scheidegger C, Groner U, Keller C, Stofer S (2002a) Monitoring with lichens—monitoring lichens. In: Nimis PL, Scheidegger C, Wolseley PA (eds) Monitoring with lichens—monitoring lichens. Springer, New York, pp 359–365CrossRefGoogle Scholar
  69. Scheidegger C, Clerc P, Dietrich M, Frei M, Groner U, Keller C, Roth I, Stofer S, Vust M (2002b) Rote Liste der gefährdeten baum- und erdbewohnenden Flechten der Schweiz. WSL, CJB, BUWAL, BernGoogle Scholar
  70. Schnyder N, Bergamini A, Hofmann H, Müller N, Schubiger-Bossard C, Urmi E (2004) Rote Liste der gefährdeten Moose der Schweiz. Vollzug Umwelt. BUWAL, FUB & NISM, BUWAL-ReiheGoogle Scholar
  71. Sillett SC, Antoine ME (2004) Lichens and bryophytes in forest canopies. In: Lowman MD, Rinker HB (eds) Forest Canopies, 2nd edn. Elseiver Academic Press, New York, pp 151–174CrossRefGoogle Scholar
  72. Sillett SC, Gradstein SR, Griffin D (1995) Bryophyte diversity of Ficus tree crowns from cloud forest and pasture in Costa Rica. Bryol 98:251–260CrossRefGoogle Scholar
  73. Söderström L, Urmi E, Váňa J (2002) Distribution of Hepaticae and Anthocerotae in Europe and Macaronesia. Lindbergia 27:3–47Google Scholar
  74. Söderström L, Urmi E, Váňa J (2007) The distribution of Hepaticae and Anthocerotae in Europe and Macaronesia—update 1-427. Cryptogam Bryol 28:299–350Google Scholar
  75. Stewart KJ, Mallik AU (2006) Bryophyte responses to microclimatic edge effects across riparian buffers. Ecol Appl 16:1474–1486. doi: 10.1890/1051-0761 CrossRefPubMedGoogle Scholar
  76. R Core Team (2015) R: a language and environment for statistical computing. Accessed June 2015
  77. Van Herk CM (2001) Bark pH and susceptibility to toxic air pollutants as independent causes of changes in epiphytic lichen composition in space and time. Lichenologist 33:419–441. doi: 10.1006/lich.2001.0337 CrossRefGoogle Scholar
  78. Van Reenen GBA, Gradstein SR (1983) Studies on Colombian cryptogams XX. Acta Bot Neerl 32:163–175CrossRefGoogle Scholar
  79. Vanderpoorten A, Engels P, Sotiaux A (2004) Trends in diversity and abundance of obligate epiphytic bryophytes in a highly managed landscape. Ecography 27:567–576. doi: 10.1111/j.0906-7590.2004.03890.x CrossRefGoogle Scholar
  80. Weddeling K, Ludwig G, Hachtel M (2005) Die Moose (Bryophyta, Marchantiophyta, Anthocerophyta) der FHH-Richtlinie. In: Petersen B, Ellwanger G, Biewald G et al (eds) Das europäische Schutzgebietssystem Natura 2000. Ökologie und Verbreitung von Arten der FFH-Richtlinie in Deutschland. Landwirtschaftsverlag, Münster, pp 207–329Google Scholar
  81. Whitelaw M, Burton MAS (2015) Diversity and distribution of epiphytic bryophytes on Bramley’s Seedling trees in East of England apple orchards. Glob Ecol Conserv 4:380–387. doi: 10.1016/j.gecco.2015.07.014 CrossRefGoogle Scholar
  82. Wirth V (1987) Die Flechten Baden-Württembergs. Ulmer, StuttgartGoogle Scholar
  83. Wirth V, Hauck M, Schultz M, De Bruyn U (2013) Die Flechten Deutschlands. Ulmer, StuttgartGoogle Scholar
  84. Yang K, Koike T (2002) Estimating surface solar radiation from upper-air humidity. Sol Energy 72:177–186. doi: 10.1016/S0038-092X(01)00084-6 CrossRefGoogle Scholar
  85. Yarranton GA (1972) Distribution and succession of epiphytic lichens on black spruce near Cochrane, Ontario. Bryologist 75:462–480CrossRefGoogle Scholar
  86. Zimmermann NE, Roberts DW (2001) Final report of the MLP climate and biophysical mapping project. Accessed 12 June 2015

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Thomas Kiebacher
    • 1
    Email author
  • Christine Keller
    • 1
  • Christoph Scheidegger
    • 1
  • Ariel Bergamini
    • 1
  1. 1.Swiss Federal Institute for ForestSnow and Landscape Research WSLBirmensdorfSwitzerland

Personalised recommendations