Biodiversity and Conservation

, Volume 25, Issue 5, pp 995–1009 | Cite as

Differential processes underlying the roadside distributions of native and alien plant assemblages

Original Paper

Abstract

Although biological invasion often alters ecosystem properties and community composition at different scales, considerable uncertainty still exists regarding the underlying mechanisms that regulate the spread of alien species into new habitats. An alien invasion is generally achieved through multiple processes from multiple sources; this type of invasion often prevents us from understanding of the dispersal mechanisms. Here, we aim to disentangle the processes of alien invasion by focusing on a single migration source. We surveyed the distribution of alien and native plant species in Shiretoko National Park, located in northern Japan. We measured the coverage of each species and the environmental and spatial factors in 362 quadrats established along roadsides. We found 101 native species and 35 alien species (γ-diversity) throughout the quadrats. The local species richness (α-diversity) was higher for the alien species (6.1 species) than for the native species (3.2 species). There was a significant negative correlation in α-diversity between native and alien species. Moreover, the α-diversity and distance from the nearest town (migration source) showed a negative relationship for alien assemblages while the native assemblages showed the opposite trend. These results suggest that the alien species are expanding their distribution outward from the town, resulting in a decrease in the α-diversity of native species in localities close to the migration source. Overall, our results emphasize that roadsides could unintentionally act as corridors for alien species, even in protected areas. Careful consideration is thus needed for utilizing these human-created habitats even though they were designed for conservation and management purposes.

Keywords

Beta diversity Distance decay of similarity Human settlement Shiretoko National Park 

Supplementary material

10531_2016_1103_MOESM1_ESM.doc (44 kb)
Supplementary material 1 (DOC 43 kb)

References

  1. Alston KP, Richardson DM (2006) The roles of habitat features, disturbance, and distance from putative source populations in structuring alien plant invasions at the urban/wildland interface on the Cape Peninsula, South Africa. Biol Conserv 132:183–198. doi:10.1016/j.biocon.2006.03.023 CrossRefGoogle Scholar
  2. Arévalo JR, Delgado JD, Otto R et al (2005) Distribution of alien vs. native plant species in roadside communities along an altitudinal gradient in Tenerife and Gran Canaria (Canary Islands). Perspect Plant Ecol Evol Syst 7:185–202. doi:10.1016/j.ppees.2005.09.003 CrossRefGoogle Scholar
  3. Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Glob Ecol Biogeogr 19:134–143. doi:10.1111/j.1466-8238.2009.00490.x CrossRefGoogle Scholar
  4. Baselga A (2012) The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Glob Ecol Biogeogr 21:1223–1232. doi:10.1111/j.1466-8238.2011.00756.x CrossRefGoogle Scholar
  5. Baselga A, Lobo JM, Svenning J-C et al (2012) Dispersal ability modulates the strength of the latitudinal richness gradient in European beetles. Glob Ecol Biogeogr 21:1106–1113. doi:10.1111/j.1466-8238.2011.00753.x CrossRefGoogle Scholar
  6. Bayfield NG (1980) Replacement of vegetation on disturbed ground near ski lifts in the Cairngorm Mountains, Scotland. J Biogeogr 7:249–260. doi:10.2307/2844631 CrossRefGoogle Scholar
  7. Buckley YM, Han Y (2014) Ecology. Managing the side effects of invasion control. Science 344:975–976. doi:10.1126/science.1254662 CrossRefPubMedGoogle Scholar
  8. Christen DC, Matlack GR (2009) The habitat and conduit functions of roads in the spread of three invasive plant species. Biol Invasions 11:453–465. doi:10.1007/s10530-008-9262-x CrossRefGoogle Scholar
  9. Czech B, Krausman PR, Devers PK (2000) Economic associations among causes of species endangerment in the United States. Bioscience 50:593CrossRefGoogle Scholar
  10. DeGasperis BG, Motzkin G (2007) Windows of opportunity: historical and ecological controls on Berberis thunbergii invasions. Ecology 88:3115–3125CrossRefPubMedGoogle Scholar
  11. Deutschewitz K, Lausch A, Kühn I, Klotz S (2003) Native and alien plant species richness in relation to spatial heterogeneity on a regional scale in Germany. Glob Ecol Biogeogr 12:299–311CrossRefGoogle Scholar
  12. Dormann CF, McPherson JM, Araújo MB et al (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–628. doi:10.1111/j.2007.0906-7590.05171.x CrossRefGoogle Scholar
  13. Dukes JS, Mooney HA (1999) Does global change increase the success of biological invaders? Trends Ecol Evol 14:135–139. doi:10.1016/S0169-5347(98)01554-7 CrossRefPubMedGoogle Scholar
  14. Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6:503–523. doi:10.1007/s10021-002-0151-3 CrossRefGoogle Scholar
  15. Gaertner M, Den Breeyen A, Hui Cang, Richardson DM (2009) Impacts of alien plant invasions on species richness in Mediterranean-type ecosystems: a meta-analysis. Prog Phys Geogr 33:319–338. doi:10.1177/0309133309341607 CrossRefGoogle Scholar
  16. Gilbert B, Lechowicz MJ (2005) Invasibility and abiotic gradients: the positive correlation between native and exotic plant diversity. Ecology 86:1848–1855CrossRefGoogle Scholar
  17. Gutiérrez-Cánovas C, Millán A, Velasco J et al (2013) Contrasting effects of natural and anthropogenic stressors on beta diversity in river organisms. Glob Ecol Biogeogr 22:796–805. doi:10.1111/geb.12060 CrossRefGoogle Scholar
  18. Hirel B, Le Gouis J, Ney B et al (2007) The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot 58:2369–2387. doi:10.1093/jxb/erm097 CrossRefPubMedGoogle Scholar
  19. Hobbs RJ (2000) Invasive species in a changing world. Island Press, Washington, DC, pp 55–64Google Scholar
  20. Johnston FM, Pickering CM (2001) Alien plants in the Australian Alps. Mt Res Dev 21:284–291CrossRefGoogle Scholar
  21. Kaji K (1995) Deer irruptions—a case study in Hokkaido, Japan. Mamm Sci 35:35–43. doi:10.11238/mammalianscience.35.35 Google Scholar
  22. Kilpatrick AM (2011) Globalization, land use, and the invasion of West Nile virus. Science 334:323–327. doi:10.1126/science.1201010 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kobayashi M, Kamitani T (2000) Effects of surface disturbance and light level on seedling emergence in a Japanese secondary deciduous forest. J Veg Sci 11:93–100CrossRefGoogle Scholar
  24. La Sorte FA, McKinney ML (2006) Compositional similarity and the distribution of geographical 437 range size for assemblages of native and non-native species in urban floras. Divers Distrib 438(12):679–686. doi:10.1111/j.1472-4642.2006.00276.x CrossRefGoogle Scholar
  25. La Sorte FA, Mckinney ML, Pyšek P et al (2008) Distance decay of similarity among European urban floras: the impact of anthropogenic activities on β diversity. Glob Ecol Biogeogr 17:363–371. doi:10.1111/j.1466-8238.2007.00369.x CrossRefGoogle Scholar
  26. Levine JM, Vilà M, D’Antonio CM et al (2003) Mechanisms underlying the impacts of exotic plant invasions. Proc Biol Sci 270:775–781. doi:10.1098/rspb.2003.2327 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Levine JM, Adler PB, Yelenik SG (2004) A meta-analysis of biotic resistance to exotic plant invasions. Ecol Lett 7:975–989. doi:10.1111/j.1461-0248.2004.00657.x CrossRefGoogle Scholar
  28. Liao C, Peng R, Luo Y et al (2008) Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytol 177:706–714. doi:10.1111/j.1469-8137.2007.02290.x CrossRefPubMedGoogle Scholar
  29. Lindo Z, Winchester NN (2007) Resident corticolous oribatid mites (Acari: Oribatida): decay in community similarity with vertical distance from the ground. Ecoscience 14:223–229CrossRefGoogle Scholar
  30. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  31. McKinney ML (2002) Urbanization, biodiversity, and conservation. Bioscience 52:883–890CrossRefGoogle Scholar
  32. McKinney ML, Lockwood JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14:450–453. doi:10.1016/S0169-5347(99)01679-1 CrossRefPubMedGoogle Scholar
  33. Ministry of the Environment (2013) A management plan of Shiretoko National Park. https://www.env.go.jp/park/shiretoko/intro/files/plan_3.pdf. Accessed 6 Sept 2015
  34. Mori AS, Ota AT, Fujii S et al (2015) Concordance and discordance between taxonomic and functional homogenization: responses of soil mite assemblages to forest conversion. Oecologia. doi:10.1007/s00442-015-3342-2 Google Scholar
  35. Morlon H, Chuyong G, Condit R et al (2008) A general framework for the distance-decay of similarity in ecological communities. Ecol Lett 11:904–917. doi:10.1111/j.1461-0248.2008.01202.x CrossRefPubMedPubMedCentralGoogle Scholar
  36. Nekola JC, White PS (1999) The distance decay of similarity in biogeography and ecology. J Biogeogr 26:867–878. doi:10.1046/j.1365-2699.1999.00305.x CrossRefGoogle Scholar
  37. Paiaro V, Cabido M, Pucheta E (2011) Altitudinal distribution of native and alien plant species in roadside communities from central Argentina. Austral Ecol 36:176–184. doi:10.1111/j.1442-9993.2010.02134.x CrossRefGoogle Scholar
  38. Pauchard A, Alaback PB (2004) Influence of elevation, land use, and landscape context on patterns of alien plant invasions along roadsides in protected areas of South-Central Chile. Conserv Biol 18:238–248. doi:10.1111/j.1523-1739.2004.00300.x CrossRefGoogle Scholar
  39. Pyšek P, Pyšek A (1995) Invasion by Heracleum mantegazzianum in different habitats in the Czech Republic. J Veg Sci 6:711–718. doi:10.2307/3236442 CrossRefGoogle Scholar
  40. Qian H (2009) Beta diversity in relation to dispersal ability for vascular plants in North America. Glob Ecol Biogeogr 18:327–332. doi:10.1111/j.1466-8238.2009.00450.x CrossRefGoogle Scholar
  41. Richardson DM, Macdonald IAW, Forsyth GG (1989) Reductions in plant species richness under stands of alien trees and shrubs in the fynbos biome. S Afr For J 149:1–8. doi:10.1080/00382167.1989.9628986 Google Scholar
  42. Sheley RL, Krueger-mangold J (2003) Principles for restoring invasive plant-infested Rangeland. Weed Sci 51:260–265CrossRefGoogle Scholar
  43. Shiretoko World Natural Heritage Site Scientific Council (2013) A working report for the Ezo sika deer management. http://shiretoko-whc.com/data/meeting/ezoshika_wg/h25/shikawg_H2502_gijiroku.pdf. Accessed 6 Sept 2015
  44. Smouse PE, Long JC, Sokal RR (1986) Multiple regression and correlation extensions of the mantel test of matrix correspondence. Syst Zool 35:627. doi:10.2307/2413122 CrossRefGoogle Scholar
  45. Stadler J, Trefflich A, Klotz S, Brandl R (2000) Exotic plant species invade diversity hot spots: the alien flora of northwestern Kenya. Ecography 23:169–176. doi:10.1034/j.1600-0587.2000.230202.x CrossRefGoogle Scholar
  46. Stohlgren TJ, Chong GW, Schell LD et al (2002) Assessing vulnerability to invasion by nonnative plant species at multiple spatial scales. Environ Manag 29:566–577. doi:10.1007/s00267-001-0006-2 CrossRefGoogle Scholar
  47. Sullivan JJ, Timmins SM, Williams PA (2005) Movement of exotic plants into coastal native forests from gardens in northern New Zealand. N Z J Ecol 29:1–10Google Scholar
  48. Takatsuki S (2009) Effects of sika deer on vegetation in Japan: a review. Biol Conserv 142:1922–1929. doi:10.1016/j.biocon.2009.02.011 CrossRefGoogle Scholar
  49. The Forest Agency of Japan (2013) A Shiretoko white paper: annual management report for Shiretoko World Natural Heritage Site. http://shiretoko-whc.com/data/research/annual_report/H25annual_report.pdf. Accessed 6 Sept 2015
  50. Tilman D (1997) Community invisibility, recruitment limitation, and grassland biodiversity. Ecology 78:81–92CrossRefGoogle Scholar
  51. Tobler WR (1970) A computer movie simulating urban growth in the Detroit region. Econ Geogr 46:234–240. doi:10.1126/science.11.277.620 CrossRefGoogle Scholar
  52. Vilà M, Espinar JL, Hejda M et al (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702–708. doi:10.1111/j.1461-0248.2011.01628.x CrossRefPubMedGoogle Scholar
  53. Vivrette NJ, Muller CH (1977) Mechanism of invasion and dominance of coastal grassland by Mesembryanthemum crystallinum. Ecol Monogr 47:301–318. doi:10.2307/1942519 CrossRefGoogle Scholar
  54. Von Der Lippe M, Kowarik I (2007) Long-distance dispersal of plants by vehicles as a driver of plant invasions. Conserv Biol 21:986–996. doi:10.1111/j.1523-1739.2007.00722.x CrossRefPubMedGoogle Scholar
  55. Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14. doi:10.1007/s00425-003-1105-5 CrossRefPubMedGoogle Scholar
  56. Williamson J, Harrison S (2002) Biotic and abiotic limits to the spread of exotic revegetation species. Ecol Appl 12:40–51CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Graduate School of Environment and Information SciencesYokohama National UniversityYokohamaJapan
  2. 2.Center for Global Environmental ResearchNational Institute for Environmental StudiesTsukubaJapan

Personalised recommendations