Biodiversity and Conservation

, Volume 25, Issue 5, pp 975–993 | Cite as

Exploring stream communities in a tropical biodiversity hotspot: biodiversity, regional occupancy, niche characteristics and environmental correlates

  • Jonathan D. Tonkin
  • Francis O. Arimoro
  • Peter Haase
Original Paper

Abstract

Exploring and describing biodiversity and the mechanisms structuring it is fundamental to advancing ecology. This is particularly pertinent in understudied biogeographical regions, such as the Afrotropics, that are characterised by strong seasonal climatic shifts. We investigated the characteristics of stream biodiversity in the Niger Delta region of Nigeria, a tropical biodiversity hotspot, by examining patterns in 20 stream invertebrate communities across both the wet and dry seasons. For this, we took a multi-faceted approach accounting for the three levels of biodiversity (α, β and γ), including partitioning the nestedness and turnover components of β diversity, regional occupancy-abundance patterns, niche characteristics, and the environmental drivers of community structure. α diversity was low in these streams, with strong turnover between sites leading to high β diversity contributing to regional biodiversity, but there was little variation in communities between seasons. The proportion of sites occupied by taxa declined with increasing niche position, and decreasing niche breadth. Occupancy was predicted well by a combination of these two factors (niche position and breadth), but not mean local abundance, as the abundance-occupancy link was an upper-limit unimodal relationship. On average, community structure was linked more strongly to environmental variables in the wet season. Our findings demonstrate the clear role of spatial, but not temporal, turnover in assemblages, which likely reflects the environmental heterogeneity of this region. This is further supported by the fact that regional occupancy was mostly related to niche characteristics, particularly niche position. We emphasise the importance of continued basic and applied ecological work in this important biogeographic region to enable better protection of its biodiversity.

Keywords

Occupancy-abundance Occupancy-frequency Niche breadth Niche position Nigeria Lotic Benthic invertebrates 

Notes

Acknowledgments

We thank the help of two anonymous reviewers that improved an earlier version of this manuscript. Drs. F. de Moor and H. James of Albany Museum, Grahamstown, South Africa helped in the identification of most macroinvertebrate taxa, especially Ephemeroptera, Trichoptera and Coleoptera. Deep Narayan Shah kindly assisted with GIS analyses. TWAS-DFG Sponsorship Programme for collaboration study of FOA in Germany is highly appreciated. PH acknowledges funding from the DFG (HA 3431/6-1).

Supplementary material

10531_2016_1101_MOESM1_ESM.pdf (468 kb)
Supplementary material 1 (PDF 469 kb)

References

  1. Adekola O, Mitchell G (2011) The Niger Delta wetlands: threats to ecosystem services, their importance to dependent communities and possible management measures. Int J Biodivers Sci Ecosyst Serv Manag 7:50–68CrossRefGoogle Scholar
  2. Al-Shami SA, Heino J, Che Salmah MR et al (2013) Drivers of beta diversity of macroinvertebrate communities in tropical forest streams. Freshw Biol 58:1126–1137. doi:10.1111/fwb.12113 CrossRefGoogle Scholar
  3. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46Google Scholar
  4. Anderson MJ (2006) Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62:245–253. doi:10.1111/j.1541-0420.2005.00440.x CrossRefPubMedGoogle Scholar
  5. Anderson MJ, Ellingsen KE, McArdle BH (2006) Multivariate dispersion as a measure of beta diversity. Ecol Lett 9:683–693. doi:10.1111/j.1461-0248.2006.00926.x CrossRefPubMedGoogle Scholar
  6. Anderson MJ, Crist TO, Chase JM et al (2011) Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol Lett 14:19–28. doi:10.1111/j.1461-0248.2010.01552.x CrossRefPubMedGoogle Scholar
  7. APHA (1995) Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DCGoogle Scholar
  8. Arimoro FO (2009) Impact of rubber effluent discharges on the water quality and macroinvertebrate community assemblages in a forest stream in the Niger Delta. Chemosphere 77:440–449. doi:10.1016/j.chemosphere.2009.06.031 CrossRefPubMedGoogle Scholar
  9. Arimoro FO, Ikomi RB (2008) Response of macroinvertebrate communities to abattoir wastes and other anthropogenic activities in a municipal stream in the Niger Delta, Nigeria. Environmentalist 28:85–98. doi:10.1007/s10669-007-9033-8 CrossRefGoogle Scholar
  10. Arimoro FO, Obi-Iyeke GE, Obukeni PJO (2012) Spatiotemporal variation of macroinvertebrates in relation to canopy cover and other environmental factors in Eriora River, Niger Delta, Nigeria. Environ Monit Assess 184:6449–6461. doi:10.1007/s10661-011-2432-9 CrossRefPubMedGoogle Scholar
  11. Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Glob Ecol Biogeogr 19:134–143. doi:10.1111/j.1466-8238.2009.00490.x CrossRefGoogle Scholar
  12. Bogan MT, Lytle DA (2007) Seasonal flow variation allows’time-sharing’ by disparate aquatic insect communities in montane desert streams. Freshw Biol 52:290–304. doi:10.1111/j.1365-2427.2006.01691.x CrossRefGoogle Scholar
  13. Boulton AJ, Boyero L, Covich AP et al (2008) Are tropical streams ecologically different from temperate streams? In: Dudgeon D (ed) Tropical stream ecology. Academic Press, LondonGoogle Scholar
  14. Boyero L, Ramirez A, Dudgeon D, Pearson RG (2009) Are tropical streams really different? J N Am Benthol Soc 28:397–403. doi:10.1899/08-146.1 CrossRefGoogle Scholar
  15. Boyero L, Pearson RG, Dudgeon D et al (2011) Global distribution of a key trophic guild contrasts with common latitudinal diversity patterns. Ecology 92:1839–1848. doi:10.1890/10-2244.1 CrossRefPubMedGoogle Scholar
  16. Boyero L, Pearson RG, Gessner MO et al (2015) Leaf-litter breakdown in tropical streams: is variability the norm? Freshw Sci. doi:10.1086/681093 Google Scholar
  17. Brown J (1984) On the relationship between abundance and distribution of species. Am Nat 124:255–279CrossRefGoogle Scholar
  18. Canedo-Arguelles M, Boersma KS, Bogan MT et al (2015) Dispersal strength determines meta-community structure in a dendritic riverine network. J Biogeogr 42:778–790. doi:10.1111/jbi.12457 CrossRefGoogle Scholar
  19. Chesson P, Huntly N (1997) The roles of harsh and fluctuating conditions in the dynamics of ecological communities. Am Nat 150:519–553CrossRefPubMedGoogle Scholar
  20. Clarke KR, Ainsworth M (1993) A method of linking multivariate community structure to environmental variables. Mar Ecol-Progress Ser 92:205–219CrossRefGoogle Scholar
  21. Core Team R (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  22. Costa SS, Melo AS (2008) Beta diversity in stream macroinvertebrate assemblages: among-site and among-microhabitat components. Hydrobiologia 598:131–138. doi:10.1007/s10750-007-9145-7 CrossRefGoogle Scholar
  23. Day JA, Harrison AD, De Moor IJ (2003) Guides to the Freshwater Invertebrates of Southern Africa: Diptera. Water Research Commission, PretoriaGoogle Scholar
  24. Doledec S, Chessel D, Clementine G-C (2000) Niche separation in community analysis: a new method. Ecology 81:2914–2927CrossRefGoogle Scholar
  25. Dray S, Dufour A-B, Thioulouse J et al (2015) Ade4: analysis of ecological data: exploratory and euclidean methods in environmental sciences. R package version 1.7-3Google Scholar
  26. Dudgeon D (2008) Tropical stream ecology. Academic Press, LondonGoogle Scholar
  27. Dudgeon D, Arthington AH, Gessner MO et al (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev Camb Philos Soc 81:163–182. doi:10.1017/S1464793105006950 CrossRefPubMedGoogle Scholar
  28. Ebeku KSA (2004) Biodiversity conservation in Nigeria: an appraisal of the legal regime in relation to the Niger Delta area of the country. J Environ Law 16:361–375CrossRefGoogle Scholar
  29. Fuller RL, LaFave C, Anastasi M et al (2008) The role of canopy cover on the recovery of periphyton and macroinvertebrate communities after a month-long flood. Hydrobiologia 598:47–57. doi:10.1007/s10750-007-9139-5 CrossRefGoogle Scholar
  30. Gaston K, Blackburn T (2000) Pattern and Process in Macroecology.Google Scholar
  31. Gaston KJ, Blackburn TIMM, Greenwoodx JD et al (2000) Abundance-occupancy relationships. J Appl Ecol 37:39–59. doi:10.1046/j.1365-2664.2000.00485.x CrossRefGoogle Scholar
  32. Gregory RD, Gaston KJ (2000) Explanations of commonness and rarity in British breeding birds: separating resource use and resource availability. Oikos 88:515–526CrossRefGoogle Scholar
  33. Hanski I (1998) Metapopulation dynamics. Nature 396:41–49CrossRefGoogle Scholar
  34. Hanski I, Kouki J, Halkka A (1993) Three explanations of the positive relationship between distribution and abundance of species. In: Ricklefs RE, Schluter D (eds) Species diversity in ecological communities: historical and geographical perspectives. University of Chicago Press, Chicago, pp 108–116Google Scholar
  35. Harrell FE Jr (2015) Hmisc: Harrell miscellaneous. R package version 3.17-1Google Scholar
  36. Heatherly T, Whiles MR, Gibson DJ et al (2007) Stream insect occupancy-frequency patterns and metapopulation structure. Oecologia 151:313–321. doi:10.1007/s00442-006-0596-8 CrossRefPubMedGoogle Scholar
  37. Heino J (2005) Positive relationship between regional distribution and local abundance in stream insects: a consequence of niche breadth or niche position? Ecography 28:345–354CrossRefGoogle Scholar
  38. Heino J (2009) Biodiversity of aquatic insects: spatial gradients and environmental correlates of assemblage-level measures at large scales. Freshw Rev 2:1–29. doi:10.1608/FRJ-2.1.1 CrossRefGoogle Scholar
  39. Heino J (2011) A macroecological perspective of diversity patterns in the freshwater realm. Freshw Biol 56:1703–1722. doi:10.1111/j.1365-2427.2011.02610.x CrossRefGoogle Scholar
  40. Heino J, Grönroos M (2014) Untangling the relationships among regional occupancy, species traits, and niche characteristics in stream invertebrates. Ecol Evol 4:1931–1942. doi:10.1002/ece3.1076 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Heino J, Virtanen R (2006) Relationships between distribution and abundance vary with spatial scale and ecological group in stream bryophytes. Freshw Biol 51:1879–1889. doi:10.1111/j.1365-2427.2006.01624.x CrossRefGoogle Scholar
  42. Heino J, Grönroos M, Soininen J et al (2012) Context dependency and metacommunity structuring in boreal headwater streams. Oikos 121:537–544. doi:10.1111/j.1600-0706.2011.19715.x CrossRefGoogle Scholar
  43. Heino J, Melo AS, Bini LM (2015a) Reconceptualising the beta diversity-environmental heterogeneity relationship in running water systems. Freshw Biol 60:223–235. doi:10.1111/fwb.12502 CrossRefGoogle Scholar
  44. Heino J, Melo AS, Siqueira T et al (2015b) Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshw Biol 60:845–869. doi:10.1111/fwb.12533 CrossRefGoogle Scholar
  45. Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi:10.1002/joc.1276 CrossRefGoogle Scholar
  46. Hynes HBN (1970) The ecology of running waters. Liverpool University Press, Liverpool, 555 pGoogle Scholar
  47. Jacobsen D, Cressa C, Mathooko JM, Dudgeon D (2008) Macroinvertebrates: composition, life histories and production. In: Dudgeon D (ed) Tropical stream ecology. Academic Press: New York, NY, pp 65–105Google Scholar
  48. Jost L (2007) Partitioning diversity into independent alpha and beta components. Ecology 88:2427–2439CrossRefPubMedGoogle Scholar
  49. Kasangaki A, Chapman LJ, Balirwa J (2008) Land use and the ecology of benthic macroinvertebrate assemblages of high-altitude rainforest streams in Uganda. Freshw Biol 53:681–697. doi:10.1111/j.1365-2427.2007.01925.x CrossRefGoogle Scholar
  50. Koenker R (2015) Quantreg: quantile regression. R package version 5.19Google Scholar
  51. Landeiro VL, Bini LM, Melo AS et al (2012) The roles of dispersal limitation and environmental conditions in controlling caddisfly (Trichoptera) assemblages. Freshw Biol 57:1554–1564. doi:10.1111/j.1365-2427.2012.02816.x CrossRefGoogle Scholar
  52. Larsen S, Ormerod SJ (2014) Anthropogenic modification disrupts species co-occurrence in stream invertebrates. Glob Change Biol 20:51–60. doi:10.1111/gcb.12355 CrossRefGoogle Scholar
  53. Lehner B, Verdin K, Jarvis A (2006) HydroSHEDS technical documentation. World Wildlife Fund US, Washington, DCGoogle Scholar
  54. Leps M, Tonkin J, Dahm V et al (2015) Disentangling environmental drivers of benthic invertebrate assemblages: the role of spatial scale and riverscape heterogeneity in a multiple stressor environment. Sci Total Environ. doi:10.1016/j.scitotenv.2015.07.083 PubMedGoogle Scholar
  55. Leung ASL, Dudgeon D (2011) Scales of spatiotemporal variability in macroinvertebrate abundance and diversity in monsoonal streams: detecting environmental change. Freshw Biol 56:1193–1208. doi:10.1111/j.1365-2427.2010.02556.x CrossRefGoogle Scholar
  56. Leung ASL, Li AOY, Dudgeon D (2012) Scales of spatiotemporal variation in macroinvertebrate assemblage structure in monsoonal streams: the importance of season. Freshw Biol 57:218–231. doi:10.1111/j.1365-2427.2011.02707.x CrossRefGoogle Scholar
  57. Ligeiro R, Melo AS, Callisto M (2010) Spatial scale and the diversity of macroinvertebrates in a Neotropical catchment. Freshw Biol 55:424–435. doi:10.1111/j.1365-2427.2009.02291.x CrossRefGoogle Scholar
  58. Linke S, Bailey RC, Schwindt J (1999) Temporal variability of stream bioassessments using benthic macroinvertebrates. Freshw Biol 42:575–584. doi:10.1046/j.1365-2427.1999.00492.x CrossRefGoogle Scholar
  59. Luiselli L (2009) A model assessing the conservation threats to freshwater turtles of Sub-Saharan Africa predicts urgent need for continental conservation planning. Biodivers Conserv 18:1349–1360CrossRefGoogle Scholar
  60. Masese FO, Kitaka N, Kipkemboi J et al (2014) Macroinvertebrate functional feeding groups in Kenyan highland streams: evidence for a diverse shredder guild. Freshwater Science 33:435–450. doi:10.1086/675681 CrossRefGoogle Scholar
  61. McGeoch M, Gaston KJ (2002) Occupancy frequency distributions: patterns, artefacts and mechanisms. Biol Rev Camb Philos Soc 77:311–331CrossRefPubMedGoogle Scholar
  62. Merritt RW, Cummins KW (1996) An introduction to the aquatic insects of North America. Kendall Hunt, St. LouisGoogle Scholar
  63. Moor I de, Day J, Moor F de (eds) (2003) Guides to the Freshwater Invertebrates of Southern Africa. Volume 7: Insecta I. Ephemeroptera, Odonata and Plecoptera. Taylor & FrancisGoogle Scholar
  64. Mykrä H, Heino J, Muotka T (2007) Scale-related patterns in the spatial and environmental components of stream macroinvertebrate assemblage variation. Glob Ecol Biogeogr 16:149–159. doi:10.1111/j.1466-8238.2006.00272.x CrossRefGoogle Scholar
  65. Oksanen J, Blanchet FG, Kindt R et al (2016) Vegan: Community ecology package. R package version 2.3-3Google Scholar
  66. Passy SI (2012) A hierarchical theory of macroecology. Ecol Lett 15:923–934. doi:10.1111/j.1461-0248.2012.01809.x CrossRefPubMedGoogle Scholar
  67. Ra Slatyer, Hirst M, Sexton JP (2013) Niche breadth predicts geographical range size: a general ecological pattern. Ecol Lett 16:1104–1114. doi:10.1111/ele.12140 CrossRefGoogle Scholar
  68. Ríos-Touma B, Encalada AC, Prat N (2011) Macroinvertebrate assemblages of an Andean high-altitude tropical stream: the importance of season and flow. Int Rev Hydrobiol 96:667–685. doi:10.1002/iroh.201111342 CrossRefGoogle Scholar
  69. Siqueira T, Bini LM, Cianciaruso MV et al (2009) The role of niche measures in explaining the abundance-distribution relationship in tropical lotic chironomids. Hydrobiologia. doi: 10.1007/s10750-009-9945-z
  70. Sodhi NS, Koh LP, Brook BW, Ng PKL (2004) Southeast Asian biodiversity: an impending disaster. Trends Ecol Evol 19:654–660. doi:10.1016/j.tree.2004.09.006 CrossRefPubMedGoogle Scholar
  71. Soininen J, Heino J (2005) Relationships between local population persistence, local abundance and regional occupancy of species: distribution patterns of diatoms in boreal streams. J Biogeogr 32:1971–1978. doi:10.1111/j.1365-2699.2005.01342.x CrossRefGoogle Scholar
  72. Strayer DL, Dudgeon D (2010) Freshwater biodiversity conservation: recent progress and future challenges. J N Am Benthol Soc 29:344–358. doi:10.1899/08-171.1 CrossRefGoogle Scholar
  73. Tales E, Keith P, Oberdorff T (2004) Density-range size relationships in French riverine fishes. Oecologia 138:360–370. doi:10.1007/s00442-003-1430-1 CrossRefPubMedGoogle Scholar
  74. Taylor M (2015) Sinkr. R package version 2.0Google Scholar
  75. Tello JS, Stevens RD (2010) Multiple environmental determinants of regional species richness and effects of geographic range size. Ecography 33:796–808. doi:10.1111/j.1600-0587.2009.05991.x CrossRefGoogle Scholar
  76. Thompson RM, Townsend CR (2006) A truce with neutral theory: local deterministic factors, species traits and dispersal limitation together determine patterns of diversity in stream invertebrates. J Anim Ecol 75:476–484. doi:10.1111/j.1365-2656.2006.01068.x CrossRefPubMedGoogle Scholar
  77. Tonkin JD (2014) Drivers of macroinvertebrate community structure in unmodified streams. PeerJ 2:e465. doi:10.7717/peerj.465 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Tonkin JD, Stoll S, Jähnig SC, Haase P (2015a) Contrasting metacommunity structure and beta diversity in an aquatic-floodplain system. Oikos. doi:10.1111/oik.02717 Google Scholar
  79. Tonkin JD, Stoll S, Jähnig SC, Haase P (2015b) Anthropogenic land-use stress alters community concordance at the river-riparian interface. Ecol Ind. doi:10.1016/j.ecolind.2015.08.037 Google Scholar
  80. Tonkin JD, Heino J, Sundermann A et al (2016) Context dependency in biodiversity patterns of central German stream metacommunities. Freshw Biol. doi:10.1111/fwb.12728 Google Scholar
  81. Venier L, Fahrig L (1996) Habitat availability causes the species abundance-distribution relationship. Oikos 76:564–570CrossRefGoogle Scholar
  82. Verberk WCEP, van der Velde G, Esselink H (2010) Explaining abundance-occupancy relationships in specialists and generalists: a case study on aquatic macroinvertebrates in standing waters. J Anim Ecol 79:589–601. doi:10.1111/j.1365-2656.2010.01660.x CrossRefPubMedGoogle Scholar
  83. Vinson MR, Hawkins CP (1998) Biodiversity of stream insects: variation at local, basin, and regional scales. Annu Rev Entomol 43:271–293. doi:10.1146/annurev.ento.43.1.271 CrossRefPubMedGoogle Scholar
  84. Vinson MR, Hawkins CP (2003) Broad-scale geographical patterns in local stream insect genera richness. Ecography 26:751–767. doi:10.1111/j.0906-7590.2003.03397.x CrossRefGoogle Scholar
  85. Vörösmarty CJ, McIntyre PB, Gessner MO et al (2010) Global threats to human water security and river biodiversity. Nature 467:555–561. doi:10.1038/nature09440 CrossRefPubMedGoogle Scholar
  86. Whittaker RH (1960) Vegetation of the Siskiyou mountains, Oregon and California. Ecol Monogr 30:279–338CrossRefGoogle Scholar
  87. Willig M, Kaufman D, Stevens R (2003) Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annu Rev Ecol Evol Syst 34:273–309. doi:10.1146/annurev.ecolsys.34.012103.144032 CrossRefGoogle Scholar
  88. Winemiller KO, Jepsen D (1998) Effects of seasonality and fish movement on tropical river food webs. J Fish Biol 53:267–296CrossRefGoogle Scholar
  89. Zomer RJ, Trabucco A, Bossio DA, Verchot LV (2008) Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric Ecosyst Environ 126:67–80. doi:10.1016/j.agee.2008.01.014 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Jonathan D. Tonkin
    • 1
    • 4
  • Francis O. Arimoro
    • 1
    • 2
  • Peter Haase
    • 1
    • 3
  1. 1.Department of River Ecology and ConservationSenckenberg Research Institute and Natural History Museum FrankfurtGelnhausenGermany
  2. 2.Applied Hydrobiology Unit, Department of Biological SciencesFederal University of TechnologyMinnaNigeria
  3. 3.Department of River and Floodplain Ecology, Faculty of BiologyUniversity of Duisburg-EssenEssenGermany
  4. 4.Department of Integrative BiologyOregon State UniversityCorvallisUSA

Personalised recommendations