Biodiversity and Conservation

, Volume 25, Issue 1, pp 169–185 | Cite as

Does neighbourhood tree diversity affect the crown arthropod community in saplings?

  • Nuri Nurlaila SetiawanEmail author
  • Margot Vanhellemont
  • Lander Baeten
  • Ritchie Gobin
  • Pallieter De Smedt
  • Willem Proesmans
  • Evy Ampoorter
  • Kris Verheyen
Original Paper


Mixed forest with multiple tree species is expected to create heterogeneous habitat and diverse niches for the canopy arthropod community. We assessed arthropod abundance, order richness, and community composition in the crowns of saplings of nine temperate tree species in two plantations of a recently established tree diversity experiment in Belgium, and looked for relationships with the diversity and structure of the sapling’s local neighbourhood. The crown arthropod community differed between the two study sites, both in terms of abundances and composition. More arthropods were found in the post-agricultural site; the arthropod community was more complex in the formerly forested site. The tree species identity of a sapling, its apparency, and the phylogenetic diversity of its local neighbourhood all affected the crown arthropod community. Our study suggests that mixing phylogenetically distant tree species creates niches for a complex crown arthropod community.


FORBIO Biodiversity–ecosystem functioning Temperate forest Plantation Mixed forest 



The authors thank Luc Willems for the help on assembling the aspirator. The helpful comments from the editor Nigel Stork and the two anonymous reviewers are greatly acknowledged. The paper was written while NNS was funded by LOTUS Erasmus Mundus Action 2, MV and LB were funded as Postdoctoral Fellows of FWO-Vlaanderen, PDS and WP were funded as Doctoral Fellows of FWO-Vlaanderen.


The paper was written while NNS was funded by LOTUS Erasmus Mundus Action 2, MV and LB were funded as Postdoctoral Fellows of FWO-Vlaanderen, PDS and WP were funded as Doctoral Fellows of FWO-Vlaanderen.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10531_2015_1044_MOESM1_ESM.docx (245 kb)
Supplementary material 1 (DOCX 245 kb)


  1. Agrawal AA, Lau JA, Hambäck PA (2006) Community heterogeneity and the evolution of interactions between plants and insect herbivores. Q Rev Biol 81:349–376. doi: 10.1086/511529 PubMedCrossRefGoogle Scholar
  2. Ampoorter E, Baeten L, Vanhellemont M et al (2015) Disentangling tree species identity and richness effects on the herb layer: first results from a German tree diversity experiment. J Veg Sci 26:742–755. doi: 10.1111/jvs.12281 CrossRefGoogle Scholar
  3. Andow D (1991) Vegetational diversity and arthropod population response. Annu Rev Entomol 36:561–586. doi: 10.1146/annurev.ento.36.1.561 CrossRefGoogle Scholar
  4. Barbosa P, Hines J, Kaplan I et al (2009) Associational resistance and associational susceptibility: having right or wrong neighbors. Annu Rev Ecol Evol Syst 40:1–20. doi: 10.1146/annurev.ecolsys.110308.120242 CrossRefGoogle Scholar
  5. Basset Y, Novotny V, Miller SE, Kitching RL (2008) Canopy entomology, an expanding field of natural science. In: Basset Y, Novotny V, Miller SE, Kitching RL (eds) Arthropods tropical forest spatial dynamics resources use canopy. Cambridge University Press, Cambridge, pp 4–6Google Scholar
  6. Berry ME, Bock CE (1998) Effects of habitat and landscape characteristics on avian breeding distributions in Colorado foothills shrub. Southwest Nat 43:453–461Google Scholar
  7. Bird S, Coulson RN, Crossley DA (2000) Impacts of silvicultural practices on soil and litter arthropod diversity in a Texas pine plantation. For Ecol Manage 131:65–80. doi: 10.1016/S0378-1127(99)00201-7 CrossRefGoogle Scholar
  8. Brown VK, Southwood TRE (1983) Trophic diversity, niche breadth and generation times of exopterygote insects in a secondary succession. Oecologia 56:220–225. doi: 10.1007/BF00379693 CrossRefGoogle Scholar
  9. Cadotte MW, Dinnage R, Tilman D (2012) Phylogenetic diversity promotes ecosystem stability. Ecology 93:223–233. doi: 10.1890/11-0426.1 CrossRefGoogle Scholar
  10. Capinera JL (2008) Encyclopedia of entomology. Springer Science, HeidelbergCrossRefGoogle Scholar
  11. Castagneyrol B, Giffard B, Péré C, Jactel H (2013) Plant apparency, an overlooked driver of associational resistance to insect herbivory. J Ecol 101:418–429. doi: 10.1111/1365-2745.12055 CrossRefGoogle Scholar
  12. Castagneyrol B, Jactel H, Vacher C et al (2014) Effects of plant phylogenetic diversity on herbivory depend on herbivore specialization. J Appl Ecol 51:134–141. doi: 10.1111/1365-2664.12175 CrossRefGoogle Scholar
  13. Cesarz S, Fahrenholz N, Migge-Kleian S et al (2007) Earthworm communities in relation to tree diversity in a deciduous forest. Eur J Soil Biol 43:S61–S67. doi: 10.1016/j.ejsobi.2007.08.003 CrossRefGoogle Scholar
  14. Chen B, Wise DH (1999) Bottom-up limitation of predaceous arthropods in a detritus-based terrestrial food web. Ecology 80:761–772. doi: 10.1890/0012-9658(1999)080[0761:BULOPA]2.0.CO;2 CrossRefGoogle Scholar
  15. Chinery M (2012) Nieuwe insectengids. Tirion Uitgevers, UtrechtGoogle Scholar
  16. Dobson AJ (2002) An introduction to generalized linear modelsGoogle Scholar
  17. Durka W, Michalski SG (2012) Daphne: a dated phylogeny of a large European flora for phylogenetically informed ecological analyses. Ecology 93:2297–2297. doi: 10.1890/12-0743.1 CrossRefGoogle Scholar
  18. Ecke F, Löfgren O, Sörlin D (2002) Population dynamics of small mammals in relation to forest age and structural habitat factors in northern Sweden. J Appl Ecol 39:781–792. doi: 10.1046/j.1365-2664.2002.00759.x CrossRefGoogle Scholar
  19. Ernest KA (1989) Insect herbivory on a tropical understory tree: effects of leaf age and habitat. Biotropica 21:194. doi: 10.2307/2388642 CrossRefGoogle Scholar
  20. Estades CF (1997) Bird-habitat relationships in a vegetational gradient in the Andes of central Chile. Condor 99:719–727CrossRefGoogle Scholar
  21. Estrada A, Coates-Estrada R, Meritt DA (1994) Non flying mammals and landscape changes in the tropical rain forest region of Los Tuxtlas, Mexico. Ecography (Cop) 17:229–241CrossRefGoogle Scholar
  22. Goßner M, Ammer U (2006) The effects of Douglas-fir on tree-specific arthropod communities in mixed species stands with European beech and Norway spruce. Eur J For Res 125:221–235. doi: 10.1007/s10342-006-0113-y CrossRefGoogle Scholar
  23. Goßner M, Engel K, Jessel B (2008) Plant and arthropod communities in young oak stands: are they determined by site history. Biodivers Conserv 17:3165–3180. doi: 10.1007/s10531-008-9418-0 CrossRefGoogle Scholar
  24. Haase J, Castagneyrol B, Cornelissen JHC et al (2015) Contrasting effects of tree diversity on young tree growth and resistance to insect herbivores across tree biodiversity experiments. Oikos n/a–n/a. doi: 10.1111/oik.02090 Google Scholar
  25. Haddad NM, Tilman D, Haarstad J et al (2001) Contrasting effects of plant richness and composition on insect communities: a field experiment. Am Nat 158:17–35. doi: 10.1086/320866 PubMedCrossRefGoogle Scholar
  26. Haddad NM, Crutsinger GM, Gross K et al (2009) Plant species loss decreases arthropod diversity and shifts trophic structure. Ecol Lett 12:1029–1039. doi: 10.1111/j.1461-0248.2009.01356.x PubMedCrossRefGoogle Scholar
  27. Hajek AE, Dahlsten DL (1986) Coexistence of three species of leaf-feeding aphids (Homoptera) on Betula pendula. Oecologia 68:380–386. doi: 10.1007/bf01036743 CrossRefGoogle Scholar
  28. Hambäck P, Beckerman A (2003) Herbivory and plant resource competition: a review of two interacting interactions. Oikos 1:26–37. doi: 10.1034/j.1600-0706.2003.12568.x CrossRefGoogle Scholar
  29. Harmon-Threatt AN, Ackerly DD (2013) Filtering across spatial scales: phylogeny, biogeography and community structure in Bumble Bees. PLoS One. doi: 10.1371/journal.pone.0060446 PubMedPubMedCentralGoogle Scholar
  30. Hopkin SP (2007) A key to the Collembola (Springtails) of Britain and Ireland. Field Studies CouncilGoogle Scholar
  31. Jactel H, Brockerhoff EG (2007) Tree diversity reduces herbivory by forest insects. Ecol Lett 10:835–848. doi: 10.1111/j.1461-0248.2007.01073.x PubMedCrossRefGoogle Scholar
  32. Jactel H, Brockerhoff EG, Duelli P (2005) A test of the biodiversity–stability theory: meta-analysis of tree species diversity effects on insect pest infestations, and re-examination of responsible factors. In: Scherer-Lorenzen M, Körner C, Schulze E-D (eds) Forest divers functional template boreal system. Springer, Heidelberg, pp 235–262CrossRefGoogle Scholar
  33. Jeffries JM, Marquis RJ, Forkner RE (2006) Forest age influences oak insect herbivore community structure, richness, and density. Ecol Appl 16:901–912. doi: 10.1890/1051-0761(2006)016[0901:FAIOIH]2.0.CO;2 PubMedCrossRefGoogle Scholar
  34. Jost L (2006) Entropy and diversity. Oikos 113:363–375. doi: 10.1111/j.2006.0030-1299.14714.x CrossRefGoogle Scholar
  35. Jukes MR, Ferris R, Peace AJ (2002) The influence of stand structure and composition on diversity of canopy Coleoptera in coniferous plantations in Britain. For Ecol Manage 163:27–41. doi: 10.1016/S0378-1127(01)00536-9 CrossRefGoogle Scholar
  36. Kembel SW, Cowan PD, Helmus MR et al (2010) Picante: r tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464. doi: 10.1093/bioinformatics/btq166 PubMedCrossRefGoogle Scholar
  37. Kennedy CEJ, Southwood TRE (1984) The number of species of insects associated with British tree: a re-analysis. J Anim Ecol 53:455–478CrossRefGoogle Scholar
  38. Kirk WDJ (1996) Thrips. Richmond PublishingGoogle Scholar
  39. Koricheva J, Mulder CP, Schmid B et al (2000) Numerical responses of different trophic groups of invertebrates to manipulations of plant diversity in grasslands. Oecologia 125:271–282. doi: 10.1007/s004420000450 PubMedCrossRefGoogle Scholar
  40. Kremen C, Colwell RK, Erwin TL et al (1993) Terrestrial arthropod their use in assemblages: conservation planning. Conserv Biol 7:796–808CrossRefGoogle Scholar
  41. Larrivée M, Buddle CM (2009) Diversity of canopy and understorey spiders in north-temperate hardwood forests. Agric For Entomol 11:225–237. doi: 10.1111/j.1461-9563.2008.00421.x CrossRefGoogle Scholar
  42. Lawton JH (1983) Plant architecture and the diversity of phytophagous insects. Annu Rev Entomol 28:23–39. doi: 10.1146/annurev.en.28.010183.000323 CrossRefGoogle Scholar
  43. Majer JD (1987) The conservation and study of invertebrates in remnants of native vegetation. In: Saunders DA, Arnold GW, Burbridge AA, Hopkins AJM (eds) Nature conservation. role remnants native vegetation. Surrey Beatty and Sons, Sydney, pp 333–335Google Scholar
  44. Maleque MA, Maleque MA, Ishii HT et al (2006) The use of arthropods as indicators of ecosystem integrity in forest management. J For 104:113–117Google Scholar
  45. Maleque MA, Maeto K, Ishii HT (2009) Arthropods as bioindicators of sustainable forest management, with a focus on plantation forests. Appl Entomol Zool 44:1–11. doi: 10.1303/aez.2009.1 CrossRefGoogle Scholar
  46. McCullagh PNJA, Nelder JA (1989) Generalized linear models, 2nd edition. Chapman and Hall, LondonCrossRefGoogle Scholar
  47. Minelli A, Boxshall G, Fusco G (2013) An introduction to the biology and evolution of arthropods. In: Minelli A, Boxshall G, Fusco G (eds) Arthropod Biol. Springer-Verlag, Berlin, Heidelberg, Evol, pp 1–16CrossRefGoogle Scholar
  48. Moran VC, Southwood TRE (1982) The guild composition of arthropod communities in trees. J Anim Ecol 289–306Google Scholar
  49. Müller J, Bae S, Röder J et al (2014) Airborne LiDAR reveals context dependence in the effects of canopy architecture on arthropod diversity. For Ecol Manage 312:129–137. doi: 10.1016/j.foreco.2013.10.014 CrossRefGoogle Scholar
  50. Oosterbroek P (2006) The European Families of the Diptera: Identification, diagnosis, biology, 2nd edn. Brill Academic PubGoogle Scholar
  51. Oxbrough AG, Gittings T, O’Halloran J et al (2005) Structural indicators of spider communities across the forest plantation cycle. For Ecol Manage 212:171–183. doi: 10.1016/j.foreco.2005.03.040 CrossRefGoogle Scholar
  52. Oxbrough A, French V, Irwin S et al (2012) Can mixed species stands enhance arthropod diversity in plantation forests. For Ecol Manage 270:11–18. doi: 10.1016/j.foreco.2012.01.006 CrossRefGoogle Scholar
  53. Ozanne CM (1999) A comparison of the canopy arthropod communities of coniferous and broad-leaved trees in the United Kingdom. Selbyana 20:290–298Google Scholar
  54. Paredes D, Cayuela L, Gurr GM, Campos M (2015) Is ground cover vegetation an effective biological control enhancement strategy against olive pests. PLoS ONE 10:e0117265. doi: 10.1371/journal.pone.0117265 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Price PW, Denno RF, Eubanks MD et al (2011) Insect ecology, 1st edition. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  56. R Core Team (2014) A language and environment for statistical computingGoogle Scholar
  57. Recher HF, Majer JD, Ganesh S (1996) Seasonality of canopy invertebrate communities in eucalypt forests of eastern and western Australia. Aust J Ecol 21:64–80. doi: 10.1111/j.1442-9993.1996.tb00586.x CrossRefGoogle Scholar
  58. Régolini M, Castagneyrol B, Dulaurent-mercadal A et al (2014) Tree density and apparency on the probability of attack by the pine processionary moth. For Ecol Manage 334:185–192. doi: 10.1016/j.foreco.2014.08.038 CrossRefGoogle Scholar
  59. Root RB (1967) The niche exploitation pattern of the blue-gray Gnatcatcher. Ecol Monogr 37:317–350CrossRefGoogle Scholar
  60. Root R (1973) Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol Monogr 43:95–124. doi: 10.2307/1942161 CrossRefGoogle Scholar
  61. Salamon J-A, Scheu S, Schaefer M (2008) The Collembola community of pure and mixed stands of beech (Fagus sylvatica) and spruce (Picea abies) of different age. Pedobiologia (Jena) 51:385–396. doi: 10.1016/j.pedobi.2007.10.002 CrossRefGoogle Scholar
  62. Scherber C, Vockenhuber E, Stark A et al (2014) Effects of tree and herb biodiversity on Diptera, a hyperdiverse insect order. Oecologia 174:1387–1400. doi: 10.1007/s00442-013-2865-7 PubMedCrossRefGoogle Scholar
  63. Schowalter TD (1989) Canopy arthropod community structure and herbivory in old-growth and regenerating forests in western Oregon. Can J For Res 19:318–322. doi: 10.1139/x89-047 CrossRefGoogle Scholar
  64. Schowalter TD, Zhang Y (2005) Canopy arthropod assemblages in four overstory and three understory plant species in a mixed-conifer old-growth forest in California. For Sci 51:233–242Google Scholar
  65. Schowalter TD, Stafford SG, Slagle RL (1988) Arboreal arthropod community structure in an early successional coniferous forest ecosystem in western Oregon. Gt Basin Nat 48:327–333Google Scholar
  66. Schuldt A, Fahrenholz N, Brauns M et al (2008) Communities of ground-living spiders in deciduous forests: does tree species diversity matter. Biodivers Conserv 17:1267–1284. doi: 10.1007/s10531-008-9330-7 CrossRefGoogle Scholar
  67. Setiawan NN, Vanhellemont M, Baeten L et al (2014) The effects of local neighbourhood diversity on pest and disease damage of trees in a young experimental forest. For Ecol Manage 334:1–9. doi: 10.1016/j.foreco.2014.08.032 CrossRefGoogle Scholar
  68. Siemann E (1998) Experimental tests of effects of plant productivity and diversity on grassland arthropod diversity. Ecology 79:2057–2070. doi: 10.2307/176709 CrossRefGoogle Scholar
  69. Siemann E, Tilman D, Haarstad J, Ritchie M (1998) Experimental tests of the dependence of arthropod diversity on plant diversity. Am Nat 152:738–750. doi: 10.1086/286204 PubMedCrossRefGoogle Scholar
  70. Siemann E, Haarstad J, Tilman D (1999) Dynamics of arthropod and plant diversity during old field succession. Ecography (Cop) 22:406–414. doi: 10.1111/j.1600-0587.1999.tb00577.x CrossRefGoogle Scholar
  71. Smith M, Arnold D, Eikenbary R (1996) Influence of ground cover on beneficial arthropods in Pecan. Biol Control 176:164–176. doi: 10.1006/bcon.1996.0021 CrossRefGoogle Scholar
  72. Sobek S, Goßner MM, Scherber C et al (2009a) Tree diversity drives abundance and spatiotemporal β-diversity of true bugs (Heteroptera). Ecol Entomol 34:772–782. doi: 10.1111/j.1365-2311.2009.01132.x CrossRefGoogle Scholar
  73. Sobek S, Scherber C, Steffan-Dewenter I, Tscharntke T (2009b) Sapling herbivory, invertebrate herbivores and predators across a natural tree diversity gradient in Germany’s largest connected deciduous forest. Oecologia 160:279–288. doi: 10.1007/s00442-009-1304-2 PubMedPubMedCentralCrossRefGoogle Scholar
  74. Sobek S, Steffan-Dewenter I, Scherber C, Tscharntke T (2009c) Spatiotemporal changes of beetle communities across a tree diversity gradient. Divers Distrib 15:660–670. doi: 10.1111/j.1472-4642.2009.00570.x CrossRefGoogle Scholar
  75. Sousa JP, Da Gama MM, Pinto C et al (2004) Effects of land-use on Collembola diversity patterns in a Mediterranean landscape. Pedobiologia (Jena) 48:609–622. doi: 10.1016/j.pedobi.2004.06.004 CrossRefGoogle Scholar
  76. Southwood TRE, Moran VC, Kennedy CEJ (1982) The richness, abundance and biomass of the arthropod communities on trees. J Anim Ecol 51:635–649CrossRefGoogle Scholar
  77. Southwood TRE, Wint GRW, Kennedy CEJ, Greenwood SR (2004) Seasonality abundance, species richness and specificity of the phytophagous guild of insects on oak (Quercus) canopies. Eur J Entomol 101:43–50CrossRefGoogle Scholar
  78. Southwood TRE, Wint GRW, Kennedy CEJ, Greenwood SR (2005) The composition of the arthropod fauna of the canopies of some species of oak (Quercus). Eur J Entomol 102:65–72. doi: 10.14411/eje.2005.009 CrossRefGoogle Scholar
  79. Spiecker H (2003) Silvicultural management in maintaining biodiversity and resistance of forests in Europe—temperate zone. J Environ Manage 67:55–65. doi: 10.1016/S0301-4797(02)00188-3 PubMedCrossRefGoogle Scholar
  80. Stork NE (1988) Insect diversity: facts, fiction and speculation. Biol J Linn Soc 35:321–337CrossRefGoogle Scholar
  81. Stork NE, Hammond PM (2013) Species richness and temporal partitioning in the beetle fauna of oak trees (Quercus robur L.) in Richmond Park. UK. Insect Conserv Divers 6:67–81. doi: 10.1111/j.1752-4598.2012.00188.x CrossRefGoogle Scholar
  82. Swanson ME, Franklin JF, Beschta RL et al (2011) The forgotten stage of forest succession: early-successional ecosystems on forest sites. Front Ecol Environ 9:117–125. doi: 10.1890/090157 CrossRefGoogle Scholar
  83. Symstad AJ, Siemann E, Haarstad J (2000) An experimental test of the effect of plant functional group diversity on arthropod diversity. Oikos 89:243–253. doi: 10.1034/j.1600-0706.2000.890204.x CrossRefGoogle Scholar
  84. Tahvanainen JO, Root RB (1972) The influence of vegetational diversity on the population ecology of a specialized herbivore, Phyllotreta cruciferae (Coleoptera: chrysomelidae). Oecologia 10:321–346. doi: 10.1007/BF00345736 CrossRefGoogle Scholar
  85. Tews J, Brose U, Grimm V et al (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31:79–92. doi: 10.1046/j.0305-0270.2003.00994.x CrossRefGoogle Scholar
  86. Uetz G (1991) Habitat structure and spider foraging. In: Bell SS, McCoy ED, Mushinsky HR (eds) Habitat structural physics arrange object species. Springer, Dordrecht, pp 325–348Google Scholar
  87. Ulyshen MD (2011) Arthropod vertical stratification in temperate deciduous forests: implications for conservation-oriented management. For Ecol Manage 261:1479–1489. doi: 10.1016/j.foreco.2011.01.033 CrossRefGoogle Scholar
  88. Underwood N, Inouye B, Hambäck P (2014) A conceptual framework for associational effects: when do neighbors matter and how would we know. Q Rev Biol 89:1–19. doi: 10.1086/674991 PubMedCrossRefGoogle Scholar
  89. Verheyen K, Ceunen K, Ampoorter E et al (2013) Assessment of the functional role of tree diversity: the multi-site FORBIO experiment. Plant Ecol Evol 146:26–35. doi: 10.5091/plecevo.2013.803 CrossRefGoogle Scholar
  90. Verheyen K, Vanhellemont M, Auge H et al (2015) Contributions of a global network of tree diversity experiments to sustainable forest plantations. Ambio. doi: 10.1007/s13280-015-0685-1 PubMedCentralGoogle Scholar
  91. Waltz AM, Whitham TG (1997) Plant development effects arthropod communities: opposing impacts of species. Library (Lond) 78:2133–2144. doi: 10.2307/2265950 Google Scholar
  92. Wan NF, Ji XY, Gu XJ et al (2014) Ecological engineering of ground cover vegetation promotes biocontrol services in peach orchards. Ecol Eng 64:62–65. doi: 10.1016/j.ecoleng.2013.12.033 CrossRefGoogle Scholar
  93. Wang Y, Naumann U, Wright ST, Warton DI (2012) Mvabund—an R package for model-based analysis of multivariate abundance data. Methods Ecol Evol 3:471–474. doi: 10.1111/j.2041-210X.2012.00190.x CrossRefGoogle Scholar
  94. Warton DI, Wright ST, Wang Y (2012) Distance-based multivariate analyses confound location and dispersion effects. Methods Ecol Evol 3:89–101. doi: 10.1111/j.2041-210X.2011.00127.x CrossRefGoogle Scholar
  95. Webb CO (2000) Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am Nat 156:145–155. doi: 10.1086/303378 PubMedCrossRefGoogle Scholar
  96. Webb CO, Ackerly DD, Mcpeek MA et al (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505. doi: 10.1146/annurev.ecolsys.33.010802.15044 CrossRefGoogle Scholar
  97. Wheeler AG (2001) Biology of the plant bugs (Hemiptera: Miridae), first edit. Cornell University Press, IthacaGoogle Scholar
  98. Wickham H (2009) ggplot2: elegant graphics for data analysis. doi: 10.1007/978-0-387-98141-3
  99. Wolda H (1988) Insect seasonality: why. Annu Rev Ecol Syst 19:1–18CrossRefGoogle Scholar
  100. Woodcock BA, Pywell RF (2009) Effects of vegetation structure and floristic diversity on detritivore, herbivore and predatory invertebrates within calcareous grasslands. Biodivers Conserv 19:81–95. doi: 10.1007/s10531-009-9703-6 CrossRefGoogle Scholar
  101. Zuur AF, Ieno EN, Walker N, et al. (2009) Mixed effects models and extensions in ecology with R. doi: 10.1007/978-0-387-87458-6

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Forest and Nature Lab, Department of Forest and Water ManagementGhent UniversityGontrodeBelgium

Personalised recommendations