Biodiversity and Conservation

, Volume 25, Issue 12, pp 2361–2379 | Cite as

Floristic diversity of meadow steppes in the Western Siberian Plain: effects of abiotic site conditions, management and landscape structure

  • Wanja P. MatharEmail author
  • Immo Kämpf
  • Till Kleinebecker
  • Igor Kuzmin
  • Andrey Tolstikov
  • Sergey Tupitsin
  • Norbert Hölzel
Original Paper


Temperate grasslands have suffered from severe habitat loss and degradation worldwide. In Russia, vast areas of forest-steppe grasslands have been converted to cropland during Soviet times, whilst remaining grasslands were often intensively grazed. Contrastingly, the collapse of the Soviet Union have resulted in a massive reduction in livestock numbers and cessation of management. Albeit relatively large natural grassland areas remained in the Western Siberian Plain, their present condition is poorly studied. We analysed plant species composition, functional structure and richness of grassland communities and tested for the effect of local factors (management, abiotic site conditions) and landscape factors (patch size, proportion of land cover types) on diversity patterns. Abiotic site conditions, mainly soil moisture and salinity, differentiated distinct community types. Overall, species richness was highest in meadow steppe communities with lower soil moisture and salinity. Grazing intensity and litter accumulation due to cessation of management were significant negative related to species richness and shaped the functional structure. At the landscape scale, diversity in meadow steppe grasslands was higher in forest-grassland mosaics and in small remnants isolated in a matrix of cropland. Our findings highlight that meadow steppes suffered massively under the historical habitat loss and high grazing pressure. Small species-rich remnants are evidence of the former extent of meadow steppe habitats in agricultural landscape, but are likely threatened by an extinction debt. Low intense, irregular mowing maintained species-rich meadow steppe in forest- grassland mosaics, but currently such practices are declining.


Grazing Russia Alpha diversity Mass effect Species richness 



This work was conducted as part of project SASCHA (‘Sustainable land management and adaptation strategies to climate change for the Western Siberian grain-belt’). We are grateful for funding by the German Government, Federal Ministry of Education and research within their Sustainable Land Management funding framework (funding reference 01LL0906A,F). Soil samples have been analysed by Martin Freitag, Frederike Velbert and Svenja Kunze. We thank Tim-Martin Wertebach, Sarah Weking and Kathrin Gottbehüt for help with the fieldwork and Johannes Kamp for all organisational issues during the field campaigns.

Supplementary material

10531_2015_1023_MOESM1_ESM.pdf (1.6 mb)
Supplementary material 1 (pdf 1678 kb)


  1. Aavik T, Jõgar Ü, Liira J et al (2008) Plant diversity in a calcareous wooded meadow—the significance of management continuity. J Veg Sci 19:475–484. doi: 10.3170/2008-8-18380 CrossRefGoogle Scholar
  2. Ansquer P, Duru M, Theau JP, Cruz P (2009) Convergence in plant traits between species within grassland communities simplifies their monitoring. Ecol Ind 9:1020–1029. doi: 10.1016/j.ecolind.2008.12.002 CrossRefGoogle Scholar
  3. Bai Y, Wu J, Pan Q et al (2007) Positive linear relationship between productivity and diversity: evidence from the Eurasian Steppe. J Appl Ecol 44:1023–1034. doi: 10.1111/j.1365-2664.2007.01351 CrossRefGoogle Scholar
  4. Bakker ES, Ritchie ME, Olff H et al (2006) Herbivore impact on grassland plant diversity depends on habitat productivity and herbivore size. Ecol Lett 9:780–788. doi: 10.1111/j.1461-0248.2006.00925.x CrossRefPubMedGoogle Scholar
  5. Bennett AF, Radford JQ, Haslem A (2006) Properties of land mosaics: implications for nature conservation in agricultural environments. Biol Conserv 133:250–264CrossRefGoogle Scholar
  6. Biesmeijer JC, Roberts SPM, Reemer M et al (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313:351–354. doi: 10.1126/science.1127863 CrossRefPubMedGoogle Scholar
  7. Bobbink R, Hornung M, Roelofs J (1998) The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. J Ecol 86:717–738. doi: 10.1046/j.1365-2745.1998.8650717.x CrossRefGoogle Scholar
  8. Chytrý M, Danihelka J, Ermakov N et al (2007) Plant species richness in continental southern Siberia: effects of pH and climate in the context of the species pool hypothesis. Global Ecol Biogeogr 16:668–678. doi: 10.1111/j.1466-8238.2007.00320.x CrossRefGoogle Scholar
  9. Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310. doi: 10.1126/science.199.4335.1302 CrossRefPubMedGoogle Scholar
  10. Cousins SAO, Lindborg R (2004) Assessing changes in plant distribution patterns - indicator species versus plant functional types. Ecol Ind 4:17–27. doi: 10.1016/j.ecolind.2003.11.002 CrossRefGoogle Scholar
  11. Czerepanov SK (1995) Vascular plants of Russia and adjacent States. Cambridge University Press, CambridgeGoogle Scholar
  12. Deák B, Valkó O, Török P (2014) Solonetz meadow vegetation (Beckmannion eruciformis) in East-Hungary-an alliance driven by moisture and salinity. Tuexenia 34:187–203. doi: 10.14471/2014.34.004 Google Scholar
  13. Degefie DT, Fleischer E, Klemm O et al (2014) Climate extremes in South Western Siberia: past and future. Stoch Environ Res Risk Assess 28:2161–2173. doi: 10.1007/s00477-014-0872-9 CrossRefGoogle Scholar
  14. Dengler J, Janišová M, Török P, Wellstein C (2014) Biodiversity of Palaearctic grasslands: a synthesis. Agr Ecosyst Environ 182:1–14. doi: 10.1016/j.agee.2013.12.015 CrossRefGoogle Scholar
  15. Díaz S, Lavorel S, McIntyre S et al (2007) Plant trait responses to grazing-a global synthesis. Glob Change Biol 13:313–341. doi: 10.1111/j.1365-2486.2006.01288.x CrossRefGoogle Scholar
  16. Didukh YP (2011) The ecological scales for the species of Ukrainian flora and their use in synphytoindication. Phytosociocentre, KievGoogle Scholar
  17. Drobnik J, Römermann C, Bernhardt-Römermann M, Poschlod P (2011) Adaptation of plant functional group composition to management changes in calcareous grassland. Agr Ecosyst Environ 145:29–37. doi: 10.1016/j.agee.2010.12.021 CrossRefGoogle Scholar
  18. EFTAS (2012) Land Use/Land Cover Classification of the SASCHA Test Areas. Unpublished reportGoogle Scholar
  19. Enyedi ZM, Ruprecht E, Deák M (2008) Long-term effects of the abandonment of grazing on steppe-like grasslands. Appl Veg Sci 11:55–62. doi: 10.1111/j.1654-109X.2008.tb00204.x CrossRefGoogle Scholar
  20. Ermakov N, Maltseva T (1999) Phytosociological peculiarities of south Siberian forest meadows. Ann Bot 57:63–72. doi: 10.4462/annbotrm-9048 Google Scholar
  21. Ermakov N, Maltseva T, Makunina N (1999) Classification of meadows of the South Siberian uplands and mountains. Folia Geobot 34:221–242. doi: 10.1007/BF02913397 CrossRefGoogle Scholar
  22. Ermakov N, Dring J, Rodwell J (2000) Classification of continental hemiboreal forests of North Asia. Braun-Blanquetia 28:1–131Google Scholar
  23. Ewald J (2003) The calcareous riddle: why are there so many calciphilous species in the Central European flora? Folia Geobot 38:357–366. doi: 10.1007/BF02803244 CrossRefGoogle Scholar
  24. Fischer M, Stöcklin J (1997) Local extinctions of plants in remnants of extensively used calcareous grasslands 1950–1985. Conserv Biol 11:727–737. doi: 10.1046/j.1523-1739.1997.96082.x CrossRefGoogle Scholar
  25. Fujita Y, Venterink H, Bodegom P et al (2014) Low investment in sexual reproduction threatens plants adapted to phosphorus limitation. Nature 505:82–86. doi: 10.1038/nature12733 CrossRefPubMedGoogle Scholar
  26. Gazol A, Tamme R, Takkis K et al (2012) Landscape- and small-scale determinants of grassland species diversity: direct and indirect influences. Ecography 35:944–951. doi: 10.1111/j.1600-0587.2012.07627.x CrossRefGoogle Scholar
  27. Gerstner K, Dormann CF, Stein A et al (2014) Effects of land use on plant diversity—a global meta-analysis. J Appl Ecol 51:1690–1700. doi: 10.1111/1365-2664.12329 CrossRefGoogle Scholar
  28. Gottbehüt K (2012) Birch forests in Western Siberia—a modern analogue to Pre-Boreal European forests. MSc thesis, University of MuensterGoogle Scholar
  29. Grime J (1973) Competitive exclusion in herbaceous vegetation. Nature 242:344–347. doi: 10.1038/242344a0 CrossRefGoogle Scholar
  30. Gwosdezkowo NA (Ed.) (1973) Physical geographical zoning of Tyumen Oblast, Moscow, Moscow University Press. (In Russian)Google Scholar
  31. Helm A, Hanski I, Pärtel M (2006) Slow response of plant species richness to habitat loss and fragmentation. Ecol Lett 9:72–77. doi: 10.1111/j.1461-0248.2005.00841.x PubMedGoogle Scholar
  32. Herberich E, Sikorski J, Hothorn T (2010) A robust procedure for comparing multiple means under heteroscedasticity in unbalanced designs. PLoS ONE. doi: 10.1371/journal.pone.0009788 PubMedPubMedCentralGoogle Scholar
  33. Hoekstra JM, Boucher TM, Ricketts TH, Roberts C (2005) Confronting a biome crisis: global disparities of habitat loss and protection. Ecol Lett 8:23–29. doi: 10.1111/j.1461-0248.2004.00686.x CrossRefGoogle Scholar
  34. Hölzel N, Haub C, Ingelfinger MP et al (2002) The return of the steppe—large-scale restoration of degraded land in southern Russia during the post-Soviet era. J Nat Conserv 10:75–85. doi: 10.1078/1617-1381-00009 CrossRefGoogle Scholar
  35. Janišová M, Michalcová D, Bacaro G, Ghisla A (2014) Landscape effects on diversity of semi-natural grasslands. Agr Ecosyst Environ 182:47–58. doi: 10.1016/j.agee.2013.05.022 CrossRefGoogle Scholar
  36. Kahmen S, Poschlod P (2008) Effects of grassland management on plant functional trait composition. Agric Ecosyst Environ 128:137–145. doi: 10.1016/j.agee.2008.05.016 CrossRefGoogle Scholar
  37. Kamp J, Urazaliev R, Donald PF, Hölzel N (2011) Post-Soviet agricultural change predicts future declines after recent recovery in Eurasian steppe bird populations. Biol Conserv 144:2607–2614. doi: 10.1016/j.biocon.2011.07.010 CrossRefGoogle Scholar
  38. Karetin LN (1990) Soils of the Tyumen Oblast. Novosibirsk, Nauka (in Russian) Google Scholar
  39. Kelemen A, Török P, Valkó O et al (2013) Mechanisms shaping plant biomass and species richness: plant strategies and litter effect in alkali and loess grasslands. J Veg Sci 24:1195–1203. doi: 10.1111/jvs.12027 CrossRefGoogle Scholar
  40. Kleyer M, Bekker RM, Knevel IC et al (2008) The LEDA Traitbase: a database of life-history traits of the Northwest European flora. J Ecol 96:1266–1274. doi: 10.1111/j.1365-2745.2008.01430.x CrossRefGoogle Scholar
  41. Klotz S, Kühn I, Durka W (2002) BIOLFLOR—Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland. Schriftenreihe für Vegetationskunde, 38. Bundesamt für Naturschutz, BonnGoogle Scholar
  42. Komarov VL, Bobrov EG, Tzvelev NN, Shetler SG (eds) (2004) Flora of the USSR vol 0–30. Smithsonian Institution Libraries, Washington, DCGoogle Scholar
  43. Kormann U, Rösch V, Batáry P et al (2015) Local and landscape management drive trait mediated biodiversity of nine taxa on small grassland fragments. Divers Distrib 21(10):1204–1217. doi: 10.1111/ddi.12324 CrossRefGoogle Scholar
  44. Korolyuk AY (2014) Plant communities of the class Festuco-Brometea in the West siberian Plane. Veg Russia 25:45–70 (In Russian) Google Scholar
  45. Krauss J, Steffan-Dewenter I, Tscharntke T (2004) How does landscape context contribute to effects of habitat fragmentation on diversity and population density of butterflies? J Biogeogr 30:889–900. doi: 10.1046/j.1365-2699.2003.00878.x CrossRefGoogle Scholar
  46. Kuussaari M, Bommarco R, Heikkinen RK et al (2009) Extinction debt: a challenge for biodiversity conservation. Trends Ecol Evol 24:564–571. doi: 10.1016/j.tree.2009.04.011 CrossRefPubMedGoogle Scholar
  47. Kuehling I, Broll G, Trautz D (2015) Spatio-temporal analysis of agricultural land-use intensity across the Western Siberian grain belt. Manuscript submitted for publicationGoogle Scholar
  48. Lance GN, Williams WT (1967) A general theory of classificatory sorting strategies. I. Hierarchical systems. Comput J 9:60–64CrossRefGoogle Scholar
  49. Liefert WM, Liefert O (2012) Russian agriculture during transition: performance, global impact, and outlook. Appl Econ Perspect Policy 34:37–75. doi: 10.1093/aepp/ppr046 CrossRefGoogle Scholar
  50. Lindborg R, Eriksson O (2004) Historical landscape connectivity affects present plant species diversity. Ecology 85:18401845. doi: 10.1890/04-0367 CrossRefGoogle Scholar
  51. Loos J, Turtureanu P, von Wehrden H et al (2014) Plant diversity in a changing agricultural landscape mosaic in Southern Transylvania (Romania). Agric Ecosyst Environ 199:350–357. doi: 10.1016/j.agee.2014.10.013 CrossRefGoogle Scholar
  52. Mathar W, Kleinebecker T, Hölzel N (2015) Environmental variation as a key process of co-existence in flood-meadows. J Veg Sci 26:480–491. doi: 10.1111/jvs.12254 CrossRefGoogle Scholar
  53. Meinel T (2002) Die geoökologischen Folgewirkungen der Steppenumbrüche in den 50-er Jahren in Westsibirien//Diss. Halle 2002. Accessed on 21 Nov 2014
  54. Milchunas DG, Lauenroth WK (1993) Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecol Monogr. doi: 10.2307/2937150 Google Scholar
  55. Milchunas DG, Sala OE, Lauenroth WK (1988) A generalized model of the effects of grazing by large herbivores on grassland community structure. Am Nat 132:87–106. doi: 10.1086/284839 CrossRefGoogle Scholar
  56. Moeslund JE, Arge L, Bøcher PK et al (2013) Topographically controlled soil moisture drives plant diversity patterns within grasslands. Biodivers Conserv 22:2151–2166. doi: 10.1007/s10531-013-0442-3 CrossRefGoogle Scholar
  57. Öckinger E, Eriksson AK, Smith HG (2006) Effects of grassland abandonment, restoration and management on butterflies and vascular plants. Biol Conserv 133:291–300. doi: 10.1016/j.biocon.2006.06.009 CrossRefGoogle Scholar
  58. Olff H, Ritchie ME (1998) Effects of herbivores on grassland plant diversity. Trends Ecol Evol 13:261–265. doi: 10.1016/S0169-5347(98)01364-0 CrossRefPubMedGoogle Scholar
  59. Olson DM, Dinerstein E, Wikramanayake ED et al (2001) Terrestrial Ecoregions of the World: a new map of life on earth. Bioscience 51:933–938. doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2 CrossRefGoogle Scholar
  60. Öster M, Cousins SAO, Eriksson O (2007) Size and heterogeneity rather than landscape context determine plant species richness in semi-natural grasslands. J Veg Sci 18:859–868. doi: 10.1111/j.1654-1103.2007.tb02602.x CrossRefGoogle Scholar
  61. Pärtel M, Bruun HH, Sammul M (2005) Biodiversity in temperate European grasslands: origin and conservation. Grassland Sci Eur 10:1–14Google Scholar
  62. Pfestorf H, Weiß L, Müller J et al (2013) Community mean traits as additional indicators to monitor effects of land-use intensity on grassland plant diversity. Perspect Plant Ecol 15:1–11. doi: 10.1016/j.ppees.2012.10.003 CrossRefGoogle Scholar
  63. Poschlod P, WallisDeVries MF (2002) The historical and socioeconomic perspective of calcareous grasslands-lessons from the distant and recent past. Biol Conserv 104:361–376. doi: 10.1016/S0006-3207(01)00201-4 CrossRefGoogle Scholar
  64. R Core Team (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  65. Reitalu T, Johansson LJ, Sykes MT et al (2010) History matters: village distances, grazing and grassland species diversity. J Appl Ecol 47:1216–1224. doi: 10.1111/j.1365-2664.2010.01875.x CrossRefGoogle Scholar
  66. Roleček J, Čornej II, Tokarjuk AI (2014) Understanding the extreme species richness of semi-dry grasslands in east-central Europe: a comparative approach. Preslia 86:13–34Google Scholar
  67. Schielzeth H (2010) Simple means to improve the interpretability of regression coefficients. Methods Ecol Evol 1:103–113. doi: 10.1111/j.2041-210X.2010.00012.x CrossRefGoogle Scholar
  68. Schüller H (1969) Die CAL-Methode, eine neue Methode zur Bestimmung des pflanzenverfügbaren Phosphates in Böden. Z Pflanzenern Düng Bodenk 123:48–63. doi: 10.1002/jpln.19691230106 CrossRefGoogle Scholar
  69. Selezneva NS (1973) Lesostep’ (Forest steppe). In: Gvozdetskiy IA (ed) Fiziko-geografičeskoe rajonirovanie Tjumenskoj oblasti (Physical geography of the Oblast Tyumen). Moscow State University, Moscow, pp 144–174Google Scholar
  70. Shea K, Roxburgh SH, Rauschert ESJ (2004) Moving from pattern to process: coexistence mechanisms under intermediate disturbance regimes. Ecol Lett 7:491–508. doi: 10.1111/j.1461-0248.2004.00600.x CrossRefGoogle Scholar
  71. Shmida A, Ellner S (1984) Plant coexistence of plant species with similar niches. Vegetatio 58:29–55. doi: 10.1007/BF00044894 Google Scholar
  72. Silvertown J, Dodd M, Gowing D, Mountford J (1999) Hydrologically defined niches reveal a basis for species richness in plant communities. Nature 400:61–63. doi: 10.1038/21877 CrossRefGoogle Scholar
  73. Smelansky I, Tishkov A (2012) The steppe biome in Russia: Ecosystem services, conservation status, and actual challenges. In: Werger MJA, van Staalduinen MA (eds) Eurasian steppes. Ecological problems and livelihoods in a changing world. Springer, Dordrecht, pp 45–101CrossRefGoogle Scholar
  74. Steiner NC, Köhler W (2003) Effects of landscape patterns on species richness-a modelling approach. Agr Ecosyst Environ 98:353–361. doi: 10.1016/S0167-8809(03)00095-1 CrossRefGoogle Scholar
  75. Sutcliffe LME, Batáry P, Kormann U et al (2014) Harnessing the biodiversity value of Central and Eastern European farmland. Divers Distrib. doi: 10.1111/ddi.12288 Google Scholar
  76. Ter Braak CJF, Šmilauer P (2012) Canoco reference manual and user’s guide: software for ordination, version 5.0. Microcomputer Power, Ithaca, p 496Google Scholar
  77. Török P, Miglécz T, Valkó O et al (2013) New thousand-seed weight records of the Pannonian flora and their application in analysing social behaviour types. Acta Bot Hung 55:429–472. doi: 10.1556/ABot.55.2013.3-4.17 CrossRefGoogle Scholar
  78. Tscharntke T, Klein AM, Kruess A et al (2005) Landscape perspectives on agricultural intensification and biodiversity - ecosystem service management. Ecol Lett 8:857–874. doi: 10.1111/j.1461-0248.2005.00782.x CrossRefGoogle Scholar
  79. Tscharntke T, Tylianakis JM, Rand TA et al (2012) Landscape moderation of biodiversity patterns and processes - eight hypotheses. Biol Rev 87:661–685. doi: 10.1111/j.1469-185X.2011.00216.x CrossRefPubMedGoogle Scholar
  80. Valkó O, Tóthmérész B, Kelemen A et al (2014) Environmental factors driving seed bank diversity in alkali grasslands. Agr Ecosyst Environ 182:80–87. doi: 10.1016/j.agee.2013.06.012 CrossRefGoogle Scholar
  81. Westoby M (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199:213227. doi: 10.1023/A:1004327224729 CrossRefGoogle Scholar
  82. Wilson JB, Peet RK, Dengler J, Pärtel M (2012) Plant species richness: the world records. J Veg Sci 23:796–802. doi: 10.1111/j.1654-1103.2012.01400.x CrossRefGoogle Scholar
  83. Zakh VA, Ryabogina NE, Chlachula J (2010) Climate and environmental dynamics of the mid- to late Holocene settlement in the Tobol-Ishim forest-steppe region, West Siberia. Quat Int 220:95–101. doi: 10.1016/j.quaint.2009.09.010 CrossRefGoogle Scholar
  84. Zelený D, Li CF, Chytrý M (2010) Pattern of local plant species richness along a gradient of landscape topographical heterogeneity: result of spatial mass effect or environmental shift? Ecography 33:578–589. doi: 10.1111/j.1600-0587.2009.05762.x Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Wanja P. Mathar
    • 1
    Email author
  • Immo Kämpf
    • 1
    • 2
  • Till Kleinebecker
    • 1
  • Igor Kuzmin
    • 3
  • Andrey Tolstikov
    • 3
  • Sergey Tupitsin
    • 3
  • Norbert Hölzel
    • 1
  1. 1.Institute of Landscape EcologyUniversity of MünsterMünsterGermany
  2. 2.Vegetation Ecology and BotanyUniversity of Applied Sciences OsnabrückOsnabrückGermany
  3. 3.Tyumen State UniversityTyumenRussia

Personalised recommendations