Biodiversity and Conservation

, Volume 24, Issue 9, pp 2255–2272 | Cite as

Atlantic Forest spontaneous regeneration at landscape scale

  • Camila Linhares de Rezende
  • Alexandre Uezu
  • Fabio Rubio Scarano
  • Dorothy Sue Dunn Araujo
Original Paper


The Atlantic Forest suffered five centuries of continuous deforestation related to successive economic cycles, and is now reduced to 11.7 % of its original cover. The Atlantic Forest Restoration Pact was launched in 2009 and aims to restore 15 million hectares until 2050. Natural regeneration can play an important role in meeting this target, however little attention has been paid to this process and there is a gap in the knowledge about its driving factors at the landscape scale. We mapped forest cover of an Atlantic Forest municipality in Southeastern Brazil, in five timeslots between years 1978 and 2014, and used the weights of evidence method for modeling its spatial dynamics, in order to understand where natural regeneration is occurring and which are the main factors related to this phenomenon. In 36 years, forest cover increased 3,020 hectares (15.3 %), related to the decreasing of both rural population (R2 = 0.9794, p = 0.0013) and cropland cover (R2 = 0.8679, p = 0.0212). Landscape metrics shows the increment of number of fragments and structural connectivity among them. The main spatial variables influencing forest cover dynamics were topographic position, slope, solar radiation, soil type and distance to forest, urban areas and roads. Secondary forests provide ecosystem services that can turn into economic benefits, and natural regeneration can reduce restoration costs to the municipality. The cost of active restoration of the same area would have meant a total expense of U$ 15.1 million (U$ 419 k/year). We show here that spontaneous regeneration must be accounted for and incorporated into the spatial planning of Atlantic Forest restoration.


Natural regeneration Forest restoration Landscape dynamics Spatial modeling 



We would like to thank M.L. Lorini for her contributions to this study; F. Brasil, S. Teixeira, M. Gonçalves, J. Fernandes and V. Medeiros for field support; and the State Institute for the Environment of Rio de Janeiro (INEA) for supporting this research. We are very grateful to the Society for Conservation GIS (SCGIS) and ESRI Conservation Program, for providing a scholarship to C.L. Rezende and sponsoring the presentation of this study at the 13th Annual SCGIS Conference and 30th Annual ESRI International User Conference. We also thank CAPES for granting a Master’s degree fellowship to C.L. Rezende.

Supplementary material

10531_2015_980_MOESM1_ESM.pdf (237 kb)
Supplementary material 1 (PDF 237 kb)


  1. Agterberg F, Bonham Carter G, Cheng Q, Wright D (1993) Weights of evidence modeling and weighted logistic regression for mineral potential mapping. Computers in Geology, 25 Years of Progress 13–32Google Scholar
  2. Aide TM, Cavelier J (1994) Barriers to lowland tropical forest restoration in the Sierra Nevada de Santa Marta, Colombia. Restor Ecol 2:219–229. doi: 10.1111/j.1526-100X.1994.tb00054.x CrossRefGoogle Scholar
  3. Almeida C, Gleriani J, Castejon E, Soares-Filho B (2008) Using neural networks and cellular automata for modelling intra-urban land-use dynamics. Int J Geogr Inf Sci 22:943–964CrossRefGoogle Scholar
  4. Andren H (1994) Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71(3):355–366CrossRefGoogle Scholar
  5. Awade M, Metzger JP (2008) Using gap-crossing capacity to evaluate functional connectivity of two Atlantic rainforest birds and their response to fragmentation. Austral Ecol 33:863–871. doi: 10.1111/j.1442-9993.2008.01857.x CrossRefGoogle Scholar
  6. Balvanera P, Uriarte M, Almeida-Leñero L et al (2012) Ecosystem services research in Latin America: the state of the art. Ecosystem Services 2:56–70. doi: 10.1016/j.ecoser.2012.09.006 CrossRefGoogle Scholar
  7. Banks-Leite C, Pardini R, Tambosi LR et al (2014) Using ecological thresholds to evaluate the costs and benefits of set-asides in a biodiversity hotspot. Science 345:1041–1045. doi: 10.1126/science.1255768 CrossRefPubMedGoogle Scholar
  8. Bellard C, Leclerc C, Leroy B et al (2014) Vulnerability of biodiversity hotspots to global change. Glob Ecol Biogeogr 23:1376–1386. doi: 10.1111/geb.12228 CrossRefGoogle Scholar
  9. Bhagwat SA, Willis KJ, Birks HJB, Whittaker RJ (2008) Agroforestry: a refuge for tropical biodiversity? Trends Ecol Evol 23:261–267. doi: 10.1016/j.tree.2008.01.005 CrossRefPubMedGoogle Scholar
  10. Bonham-Carter G (1994) Geographic information systems for geoscientists: modelling with GIS. Pergamon Press, OxfordGoogle Scholar
  11. Brancalion PHS, Viani RAG, Strassburg BBN, Rodrigues RR (2012) Finding the money for tropical forest restoration. Unasylva 63:239Google Scholar
  12. Brooks TM, Pimm SL, Oyugi JO (1999) Time lag between deforestation and bird extinction in tropical forest fragments. Conserv Biol 13:1140–1150. doi: 10.2307/2260567 CrossRefGoogle Scholar
  13. Buschbacher R, Uhl C, Serrao EAS (1988) Abandoned pastures in eastern Amazonia. II. Nutrient stocks in the soil and vegetation. J Ecol 76:682–699. doi: 10.2307/2260567 CrossRefGoogle Scholar
  14. Castro CL, Pielke RA, Leoncini G (2005) Dynamical downscaling: assessment of value retained and added using the Regional Atmospheric Modeling System (RAMS). J Geophys Res 110:D05108. doi: 10.1029/2004JD004721 Google Scholar
  15. Chazdon RL (2008) Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science 320:1458–1460. doi: 10.1126/science.1155365 CrossRefPubMedGoogle Scholar
  16. Chuvieco E, Riaño D, Aguado I, Cocero D (2002) Estimation of fuel moisture content from multitemporal analysis of Landsat Thematic Mapper reflectance data: applications in fire danger assessment. Int J Remote Sens 23:2145–2162. doi: 10.1080/01431160110069818 CrossRefGoogle Scholar
  17. Cohen WB, Yang Z, Kennedy R (2010) Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync—Tools for calibration and validation. Remote Sens Environ 114:2911–2924. doi: 10.1016/j.rse.2010.07.010 CrossRefGoogle Scholar
  18. Cowlishaw G (1999) Predicting the pattern of decline of African primate diversity: an extinction debt from historical deforestation. Conserv Biol 13:1183–1193CrossRefGoogle Scholar
  19. Dean W (1996) A ferro e fogo: a história e a devastação da Mata Atlântica brasileira. Editora Companhia das Letras, São PauloGoogle Scholar
  20. Edwards DP, Larsen TH, Docherty TDS et al (2011) Degraded lands worth protecting: the biological importance of Southeast Asia’s repeatedly logged forests. Proc R Soc Lond B Biol Sci 278:82–90. doi: 10.1098/rspb.2010.1062 CrossRefGoogle Scholar
  21. ESRI (2013) ArcGIS Desktop. Environmental Systems Research Institute, RedlandsGoogle Scholar
  22. Etter A, McAlpine C, Pullar D, Possingham H (2005) Modeling the age of tropical moist forest fragments in heavily-cleared lowland landscapes of Colombia. For Ecol Manag 208:249–260. doi: 10.1016/j.foreco.2004.12.008 CrossRefGoogle Scholar
  23. Etter A, McAlpine C, Pullar D, Possingham H (2006) Modelling the conversion of Colombian lowland ecosystems since 1940: drivers, patterns and rates. J Environ Manag 79:74–87. doi: 10.1016/j.jenvman.2005.05.017 CrossRefGoogle Scholar
  24. Fahrig L (2001) How much habitat is enough? Biol Conserv 100:65–74. doi: 10.1016/S0006-3207(00)00208-1 CrossRefGoogle Scholar
  25. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515CrossRefGoogle Scholar
  26. FAO (2010) Global forest resources assessment 2010: main report. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  27. Ferraz G, Nichols JD, Hines JE et al (2007) A large-scale deforestation experiment: effects of patch area and isolation on Amazon birds. Science 315:238–241. doi: 10.1126/science.1133097 CrossRefPubMedGoogle Scholar
  28. Freitas SR, Neves CL, Chernicharo P (2006) Tijuca National Park: two pioneering restorationist initiatives in Atlantic forest in southeastern Brazil. Braz J Biol 66:975–982. doi: 10.1590/S1519-69842006000600004 CrossRefPubMedGoogle Scholar
  29. Freitas SR, Hawbaker TJ, Metzger JP (2010) Effects of roads, topography, and land use on forest cover dynamics in the Brazilian Atlantic Forest. For Ecol Manag 259:410–417. doi: 10.1016/j.foreco.2009.10.036 CrossRefGoogle Scholar
  30. Grau HR, Aide TM, Zimmerman JK et al (2003) The ecological consequences of socioeconomic and land-use changes in post agriculture Puerto Rico. Bioscience 53:1159–1168CrossRefGoogle Scholar
  31. Guariguata M, Ostertag R (2001) Neotropical secondary forest succession: changes in structural and functional characteristics. For Ecol Manag 148:185–206. doi: 10.1016/S0378-1127(00)00535-1 CrossRefGoogle Scholar
  32. Hagen A (2003) Fuzzy set approach to assessing similarity of categorical maps. Int J Geogr Inf Sci 17:235–249. doi: 10.1080/13658810210157822 CrossRefGoogle Scholar
  33. Hanski I, Gilpin ME (eds) (1997) Metapopulation biology: ecology, genetics, and evolution. Academic Press, San DiegoGoogle Scholar
  34. Helmer EH, Brandeis TJ, Lugo AE, Kennaway T (2008) Factors influencing spatial pattern in tropical forest clearance and stand age: implications for carbon storage and species diversity. J Geophys Res 113(14):2008. doi: 10.1029/2007JG000568 Google Scholar
  35. Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  36. Hobbs RJ, Arico S, Aronson J et al (2006) Novel ecosystems: theoretical and management aspects of the new ecological world order. Glob Ecol Biogeogr 15:1–7. doi: 10.1111/j.1466-822X.2006.00212.x CrossRefGoogle Scholar
  37. Hole DG, Perkins AJ, Wilson JD et al (2005) Does organic farming benefit biodiversity? Biol Conserv 122:113–130. doi: 10.1016/j.biocon.2004.07.018 CrossRefGoogle Scholar
  38. Holl KD (1999) Factors limiting tropical rain forest regeneration in abandoned pasture: seed rain, seed germination, microclimate, and soil. Biotropica 31:229–242. doi: 10.1111/j.1744-7429.1999.tb00135.x CrossRefGoogle Scholar
  39. Holl KD, Aide TM (2011) When and where to actively restore ecosystems? For Ecol Manage 261:1558–1563. doi: 10.1016/j.foreco.2010.07.004 CrossRefGoogle Scholar
  40. Jenkins CN, Pimm SL, Joppa LN (2013) Global patterns of terrestrial vertebrate diversity and conservation. PNAS 110:E2602–E2610. doi: 10.1073/pnas.1302251110 PubMedCentralCrossRefPubMedGoogle Scholar
  41. Jenness J (2006) Topographic Position Index. Jenness Enterprises, FlagstaffGoogle Scholar
  42. Joly CA, Metzger JP, Tabarelli M (2014) Experiences from the Brazilian Atlantic Forest: ecological findings and conservation initiatives. New Phytol 204:459–473. doi: 10.1111/nph.12989 CrossRefPubMedGoogle Scholar
  43. Laurance WF, Clements GR, Sloan S et al (2014) A global strategy for road building. Nature 513:229–232. doi: 10.1038/nature13717 CrossRefPubMedGoogle Scholar
  44. Linhares EF (2004) Entre escravos e anjos: condições e significados da infância em um assentamento rural fluminense. Universidade Federal do Rio de Janeiro, Tese de DoutoradoGoogle Scholar
  45. Lira PK, Ewers RM, Banks-Leite C et al (2012) Evaluating the legacy of landscape history: extinction debt and species credit in bird and small mammal assemblages in the Brazilian Atlantic Forest. J Appl Ecol 49:1325–1333. doi: 10.1111/j.1365-2664.2012.02214.x CrossRefGoogle Scholar
  46. Machado ABM, Drummond GM, Paglia AP (eds) (2010) Livro vermelho da fauna brasileira ameaçada de extinção. Ministério do Meio Ambiente, Ministério da Educação, BrasíliaGoogle Scholar
  47. Magrin GO, Marengo JA, Boulanger J-P et al (2014) Central and South America. In: Barros VR, Field CB, Dokken DJ et al (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part B: Regional aspects. contribution of working Group II to the fifth assessment report of the intergovernmental panel of climate change. Cambridge University Press, Cambridge, pp 1499–1566Google Scholar
  48. Martensen AC, Pimentel RG, Metzger JP (2008) Relative effects of fragment size and connectivity on bird community in the Atlantic Rain Forest: implications for conservation. Biol Conserv 141:2184–2192. doi: 10.1016/j.biocon.2008.06.008 CrossRefGoogle Scholar
  49. Martensen AC, Ribeiro MC, Banks-Leite C et al (2012) Associations of forest cover, fragment area, and connectivity with neotropical understory bird species richness and abundance. Conserv Biol 26:1100–1111. doi: 10.1111/j.1523-1739.2012.01940.x CrossRefPubMedGoogle Scholar
  50. Martinelli G, Moraes MA (eds) (2013) Livro vermelho da flora do Brasil. Centro Nacional de Conservação da Flora, Rio de JaneiroGoogle Scholar
  51. McGarigal K, Cushman S, Neel M, Ene E (2002) FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps. Department of Environmental Conservation, University of Massachusetts, AmherstGoogle Scholar
  52. Melo FPL, Pinto SRR, Brancalion PHS et al (2013) Priority setting for scaling-up tropical forest restoration projects: early lessons from the Atlantic Forest Restoration Pact. Environ Sci Policy 33:395–404. doi: 10.1016/j.envsci.2013.07.013 CrossRefGoogle Scholar
  53. Ministério do Meio Ambiente (2007) Áreas Prioritárias para Conservação, Uso Sustentável e Repartição dos Benefícios da Biodiversidade BrasileiraGoogle Scholar
  54. Mittermeier RA, Gil PR, Hoffman M et al (2005) Hotspots revisited: earth’s biologically richest and most endangered terrestrial ecoregions. Cemex, Mexico CityGoogle Scholar
  55. Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. doi: 10.1038/35002501 CrossRefPubMedGoogle Scholar
  56. Neeff T, Lucas RM, Santos JR et al (2006) Area and age of secondary forests in Brazilian Amazonia 1978–2002: an empirical estimate. Ecosystems 9:609–623CrossRefGoogle Scholar
  57. Pardini R, de Bueno A, Gardner TA et al (2010) Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes. PLoS ONE 5:e13666. doi: 10.1371/journal.pone.0013666 PubMedCentralCrossRefPubMedGoogle Scholar
  58. Pinheiro D (1993) Sindicatos e Associações em Trajano de Moraes - Rio de Janeiro: um Estudo sobre a Diferenciação da Representação Política dos Pequenos Produtores nos Anos 80. Dissertação de mestrado, Curso de Pós-Graduação em Desenvolvimento, Agricultura e Sociedade; Universidade Federal Rural do Rio de Janeiro, Rio de JaneiroGoogle Scholar
  59. Piotto D, Montagnini F, Thomas W et al (2009) Forest recovery after swidden cultivation across a 40-year chronosequence in the Atlantic forest of southern Bahia, Brazil. Plant Ecol 205:261–272. doi: 10.1007/s11258-009-9615-2 CrossRefGoogle Scholar
  60. Projeto RADAMBRASIL (1983) Regiões Fitoecológicas do Estado do Rio de JaneiroGoogle Scholar
  61. Ramadori D, Brown AD, Liberman M, Baied C (1997) Agricultura migratoria y sucesión secundaria en bosques nublados del noroeste de Argentina. Desarrollo sostenible en ecosistemas de montaña: Manejo de areas frágiles en los Andes La Paz (Bolivia): Universidad de las Naciones Unidas 113–127Google Scholar
  62. Ribeiro M, Metzger JP, Martensen AC et al (2009) The Brazilian Atlantic forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153. doi: 10.1016/j.biocon.2009.02.021 CrossRefGoogle Scholar
  63. Ribeiro MC, Martensen AC, Metzger JP et al (2011) The Brazilian Atlantic forest: a shrinking biodiversity hotspot. In: Zachos FE, Habel JC (eds) Biodiversity hotspots. Springer, Berlin, pp 405–434CrossRefGoogle Scholar
  64. Rothermel RC, Wilson RA, Morris GA, Sackett SS (1986) Modeling moisture content of fine dead wildland fuels: Input to the BEHAVE fire prediction systemGoogle Scholar
  65. Scarano FR (2009) Plant communities at the periphery of the Atlantic rain forest: rare-species bias and its risks for conservation. Biol Conserv 142:1201–1208. doi: 10.1016/j.biocon.2009.02.027 CrossRefGoogle Scholar
  66. SEA/IBGE (2006) Restituição das ortofotos do Estado do Rio de Janeiro na escala 1:25.000. Secretaria Estadual do Ambiente, Rio de JaneiroGoogle Scholar
  67. SEA/INEA (2011) Mapeamento de Solos do Estado do Rio de Janeiro na escala 1:100.000. Secretaria Estadual do Ambiente, Instituto Estadual do Ambiente, Rio de JaneiroGoogle Scholar
  68. Silva W, Metzger J, Simões S, Simonetti C (2007) Relief influence on the spatial distribution of the Atlantic Forest cover on the Ibiúna Plateau, SPInfluência do relevo na distribuição espacial da Mata Atlântica no Planalto de Ibiúna, SP. Braz J Biol 67:403–411CrossRefPubMedGoogle Scholar
  69. Soares-Filho B, Cerqueira GC, Araújo WL (2003) Modelagem de dinâmica de paisagem: concepção e potencial de aplicação de modelos de simulação baseados em autômato celular. In: Albernaz AL, Silva JMC, Valeriano D (eds) Ferramentas para modelagem da distribuição de espécies em ambientes tropicais, 1st edn. Museu Paraense Emílio Goeldi, Belém, p 100Google Scholar
  70. Soares-Filho BS, Nepstad DC, Curran LM et al (2006) Modelling conservation in the Amazon basin. Nature 440:520–523. doi: 10.1038/nature04389 CrossRefPubMedGoogle Scholar
  71. Soares-Filho BS, Rodrigues HO, Costa WLS (2009) Modelagem de Dinâmica Ambiental com Dinamica EGO. Centro de Sensoriamento Remoto/Universidade Federal de Minas Gerais, Belo HorizonteGoogle Scholar
  72. Soares-Filho BS, Rodrigues HO, de Costa WLS et al (2014) Dinamica EGO. Version 2.4.1. Universidade Federal de Minas Gerais, Belo Horizonte, Brasil.
  73. SOS Mata Atlântica, INPE (2002) Atlas dos remanescentes florestais da Mata Atlântica: período 1995–2000. SOS Mata Atlântica, São PauloGoogle Scholar
  74. SOS Mata Atlântica, INPE (2013) Atlas dos remanescentes florestais da Mata Atlântica: período 2011–2012. SOS Mata Atlântica, São PauloGoogle Scholar
  75. SOS Mata Atlântica, INPE (2014) Atlas dos remanescentes florestais da Mata Atlântica: período 2012–2013. SOS Mata Atlântica, São PauloGoogle Scholar
  76. Teixeira AMG (2005) Modelagem da dinâmica de uma paisagem do Planalto de Ibiúa (1962–2000) e inferências sobre a sua estrutura futura (2019). Master’s dissertation, Universidade de São Paulo, São PauloGoogle Scholar
  77. Teixeira AMG, Soares-Filho BS, Freitas SR, Metzger JP (2009) Modeling landscape dynamics in an Atlantic Rainforest region: implications for conservation. For Ecol Manage 257:1219–1230. doi: 10.1016/j.foreco.2008.10.011 CrossRefGoogle Scholar
  78. Uezu A (2006) Composição e estrutura da comunidade de aves na paisagem fragmentada do Pontal do Paranapanema. Doctoral thesis, Instituto de Biociências da Universidade de São Paulo, São PauloGoogle Scholar
  79. Uezu A, Metzger JP (2011) Vanishing bird species in the Atlantic Forest: relative importance of landscape configuration, forest structure and species characteristics. Biodivers Conserv 20:3627–3643. doi: 10.1007/s10531-011-0154-5 CrossRefGoogle Scholar
  80. Uezu A, Metzger JP, Vielliard JME (2005) Effects of structural and functional connectivity and patch size on the abundance of seven Atlantic Forest bird species. Biol Conserv 123:507–519. doi: 10.1016/j.biocon.2005.01.001 CrossRefGoogle Scholar
  81. Vellend M, Verheyen K, Jacquemyn H et al (2006) Extinction debt of forest plants persists for more then a century following habitat fragmentation. Ecology 87:542–548. doi: 10.1890/05-1182 CrossRefPubMedGoogle Scholar
  82. Vieira MV, Olifiers N, Delciellos AC et al (2009) Land use vs. fragment size and isolation as determinants of small mammal composition and richness in Atlantic Forest remnants. Biol Conserv 142:1191–1200CrossRefGoogle Scholar
  83. Weiss A (2001) Topographic position and landforms analysis. In: ESRI user conference. San Diego, pp 200–200Google Scholar
  84. Zachos FE, Habel JC (eds) (2011) Biodiversity hotspots: distribution and protection of conservation priority areas. Springer, HeidelbergGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Camila Linhares de Rezende
    • 1
    • 2
    • 3
  • Alexandre Uezu
    • 4
  • Fabio Rubio Scarano
    • 1
    • 2
  • Dorothy Sue Dunn Araujo
    • 1
    • 5
  1. 1.Departamento de EcologiaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Fundação Brasileira para o Desenvolvimento SustentávelRio de JaneiroBrazil
  3. 3.Instituto Estadual do AmbienteRio de JaneiroBrazil
  4. 4.Instituto de Pesquisas EcológicasNazaré PaulistaBrazil
  5. 5.Instituto de Pesquisas Jardim Botânico do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations