Advertisement

Biodiversity and Conservation

, Volume 24, Issue 9, pp 2319–2331 | Cite as

Brazilian Atlantic forest: impact, vulnerability, and adaptation to climate change

  • Fabio Rubio Scarano
  • Paula Ceotto
Original Paper

Abstract

Biodiversity hotspots are among some of the habitats most threatened by climate change, and the Brazilian Atlantic forest is no exception. Only 11.6 % of the natural vegetation cover remains in an intensely fragmented state, which results in high vulnerability of this biome to climate change. Since >60 % of the Brazilian people live within the Atlantic forest domain, societies both in rural and urban areas are also highly vulnerable to climate change. This review examines the vulnerabilities of biodiversity and society in the Atlantic forest to climate change, as well as impacts of land use and climate change, particularly on recent biological evidence of strong synergies and feedback between them. We then discuss the crucial role ecosystem-based adaptation to climate change might play in increasing the resilience of local society to future climate scenarios and provide some ongoing examples of good adaptive practices, especially related to ecosystem restoration and conservation incentive schemes such as payment for ecosystem services. Finally, we list a set of arguments about why we trust that the Atlantic forest can turn from a “shrinking biodiversity hotspot” to a climate adaptation “hope spot” whereby society’s vulnerability to climate change is reduced by protecting and restoring nature and improving human life standards.

Keywords

Atlantic forest Climate change Ecosystem-based adaptation Vulnerability 

Notes

Acknowledgments

We thank Pedro Eisenlohr for kindly offering us the opportunity to produce this paper, and two anonymous reviewers for significantly improving the quality of our manuscript with helpful comments and suggestions.

References

  1. Agard J, Schipper ELF (2014) Glossary. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1757–1776Google Scholar
  2. ANA—Agência Nacional de Águas (2013) Conjuntura dos recursos hídricos no Brasil. http://arquivos.ana.gov.br/institucional/spr/conjuntura/webSite_relatorioConjuntura/projeto/index.html
  3. Anciães M, Peterson AT (2006) Climate change effects on neotropical manakin diversity based on ecological niche modeling. Condor 108:778–791CrossRefGoogle Scholar
  4. Balvanera P, Uriarte M, Almeida-Leñero L, Altesor A, DeClerck F, Gardner T, Hall J, Lara A, Laterra P, Peña-Claros M, Silva Matos DM, Vogl AL, Romero-Duque LP, Arreola LF, Caro- Borrero ÁP, Gallego F, Jain M, Little C, de Oliveira Xavier R, Paruelo JM, Peinado JE, Poorter L, Ascarrunz N, Correa F, Cunha-Santino MB, Hernández-Sánchez AP, Vallejos M (2012) Ecosystem services research in Latin America: the state of the art. Ecosyst Serv 2:56–70CrossRefGoogle Scholar
  5. Banks-Leite C, Pardini R, Tambosi LR, Pearse WD, Bueno AA, Bruscagin RT, Condez TH, Dixo M, Igari AT, Martensen AC, Metzger JP (2014) Using ecological thresholds to evaluate the costs and benefits of set-asides in a biodiversity hotspot. Science 345:1041–1044CrossRefPubMedGoogle Scholar
  6. Béllard C, Leclerc C, Leroy B, Bakkenes M, Veloz S, Thuiller W, Courchamp F (2014) Vulnerability of biodiversity hotspots to global change. Glob Ecol Biogeogr 23:1376–1386CrossRefGoogle Scholar
  7. Brancalion PHS, Cardozo IV, Camatta A, Aronson J, Rodrigues RR (2014) Cultural ecosystem services and popular perceptions of the benefits of an ecological restoration project in the Brazilian Atlantic forest. Restor Ecol 22:65–71CrossRefGoogle Scholar
  8. Brook BW, Sodhi NS, Bradshaw CJA (2008) Synergies among extinction drivers under global change. Trends Ecol Evol 23:453–460CrossRefPubMedGoogle Scholar
  9. Burkett VR, Suarez AG, Bindi M, Conde C, Mukerji R, Prather MJ, St. Clair AL, Yohe GW (2014) Point of departure. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 169–194Google Scholar
  10. Calmon M, Lino CF, Nave AG, Pinto LP, Rodrigues RR (2009) Pacto pela Restauração da Mata Atlântica: um movimento pela valorização da floresta. In: Fujihara MA, Cavalcanti R, Guimarães A, Garlipp R (eds) O valor das florestas. Terra das Artes Editora, São Paulo, pp 330–335Google Scholar
  11. Calmon M, Brancalion PHS, Paese A, Aronson J, Castro P, da Silva SC, Rodrigues RR (2011) Emerging threats and opportunities for biodiversity conservation and ecological restoration in the Atlantic forest of Brazil. Restor Ecol 19:154–158CrossRefGoogle Scholar
  12. Canale GR, Peres CA, Guidorizzi CE, Gatto CAF, Kierulff MCM (2012) Pervasive defaunation of forest remnants in a tropical biodiversity hotspot. PLoS One 7:e41671CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cardona OD, van Aalst MK, Birkmann J, Fordham M, McGregor G, Perez R, Pulwarty RS, Schipper ELF, Sinh BT (2012) Determinants of risk: exposure and vulnerability. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) Managing the risks of extreme events and disasters to advance climate change adaptation: a special report of working groups I and II of the intergovernmental panel on climate change (IPCC). Cambridge University Press, Cambridge, pp 65–108CrossRefGoogle Scholar
  14. Chazdon RL (2008) Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science 320:1458–1460CrossRefPubMedGoogle Scholar
  15. Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Le Quéré C, Myneni RB, Piao S, Thornton P (2013) Carbon and other biogeochemical cycles. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 465–570Google Scholar
  16. Colombo AF, Joly CA (2010) Brazilian Atlantic Forest lato sensu: the most ancient Brazilian forest, and a biodiversity hotspot, is highly threatened by climate change. Braz J Biol 70:697–708CrossRefPubMedGoogle Scholar
  17. Da Riva AL, Aidar F, Toledo C, Pages M, Laes M, Dutra V (2014) Unidades de conservação no Brasil: a contribuição do uso público para o desenvolvimento socioeconômico. Instituto Semeia, São PauloGoogle Scholar
  18. De Marco P, Jr Coelho FM (2004) Services performed by the ecosystem: forest remnants influence agricultural cultures’ pollination and production. Biodivers Conserv 13:1245–1255CrossRefGoogle Scholar
  19. Dean WJ (1996) A ferro e fogo: a história e a devastação da Mata Atlântica brasileira. Companhia das Letras, Rio de JaneiroGoogle Scholar
  20. Dias ATC, de Mattos EA, Vieira SA, Azeredo JV, Scarano FR (2006) Aboveground biomass stock of native woodland on a Brazilian sandy coastal plain: estimates based on the dominant tree species. For Ecol Manag 226:364–367CrossRefGoogle Scholar
  21. Ferraz SFB, Ferraz KMPMB, Cassiano CC, Brancalion PHS, Luz DTA, Azevedo TN, Tambosi LR, Metzger JP (2014) How good are tropical forest patches for ecosystem services provisioning? Landsc Ecol 29:187–200CrossRefGoogle Scholar
  22. Ferreira J, Aragão LEOC, Barlow J, Barreto P, Berenguer E, Bustamante M, Gardner TA, Lees AC, Lima A, Louzada J, Parry L, Peres CA, Pardini R, Pompeu PS, Tabarelli M, Zuanon J (2014) Brazil’s environmental leadership at risk. Science 343:706–707CrossRefGoogle Scholar
  23. Fisher JA, Patenaude G, Kalpana G, Meir P, Pinho P, Rounsevell MDA, Williams M (2014) Understanding the relationships between ecosystem services and poverty alleviation: a conceptual framework. Ecosyst Serv 7:34–45CrossRefGoogle Scholar
  24. Freitas MAV (ed) (2003) Estado das águas no Brasil, 2001–2002. Agência Nacional de Águas, Ministério do Meio Ambiente, BrasíliaGoogle Scholar
  25. Freitas BM, Imperatriz-Fonseca VL (2004). Economic value of Brazilian cash crops and estimates of their pollination constraints. In: FAO (ed) Economic value of pollination and pollinators. Food and Agriculture Organization, Universidade de São Paulo, São PauloGoogle Scholar
  26. Freitas BM, Nunes-Silva P (2012) Polinização agrícola e sua importância no Brasil. In: Imperatriz-Fonseca VL, Canhos DAL, Alves DA, Saraiva AM (eds) Polinizadores no Brasil. Edusp, São Paulo, pp 103–118Google Scholar
  27. Galindo-Leal C, Câmara IG (2003) The Atlantic forest of South America: biodiversity status, threat and outlook. Island Press, Conservation International, WashingtonGoogle Scholar
  28. Gaspar MD, Deblasis P, Fish SK, Fish PR (2008) Sambaqui (shell mound) societies of coastal Brazil. In: Silverman E, Isbell WH (eds) Handbook of South American archaeology. Springer, New York, pp 319–338CrossRefGoogle Scholar
  29. Geden O (2015) Climate advisers must maintain integrity. Nature 521:27–28CrossRefPubMedGoogle Scholar
  30. Giannini TC, Tambosi LR, Acosta AL, Jaffé R, Saraiva AM, Imperatriz-Fonseca VL, Metzger JP (2015) Safeguarding ecosystem services: a methodological framework to buffer the joint effect of habitat configuration and climate change. PLoS One. doi: 10.1371/journal.pone.0129225 PubMedCentralGoogle Scholar
  31. Griggs D, Stafford-Smith M, Gaffney O, Rockström J, Öhman MC, Shyamsundar P, Steffen W, Glaser G, Kanie N, Noble I (2013) Sustainable development goals for people and planet. Nature 495:305–307CrossRefPubMedGoogle Scholar
  32. Hoekstra AY, Chapagain AK (2007) Water footprints of nations: water use by people as a function of their consumption pattern. Water Resour Manag 21:35–48CrossRefGoogle Scholar
  33. IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 3–29Google Scholar
  34. IPCC (2014) Summary for policymakers. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge (in press)Google Scholar
  35. IPEA, FJP, PNUD (2003) Atlas do Desenvolvimento Humano no Brasil. www.ipeadata.gov.br
  36. Jantz SM, Barker B, Brooks TM, Chini LP, Huang Q, Moore RM, Noel J, Hurtt GC (2015) Future habitat loss and extinctions driven by land-use change in biodiversity hotspots under four scenarios of climate-change mitigation. Conserv Biol. doi: 10.1111/cobi.12549 PubMedGoogle Scholar
  37. Joly C, Metzger JP, Tabarelli M (2014) Experiences from the Brazilian Atlantic Forest: ecological findings and conservation initiatives. New Phytol 204:459–473CrossRefPubMedGoogle Scholar
  38. Latawiec AE, Strassburg BBN, Brancalion PHS, Rodrigues RR, Gardner T (2015) Creating space for large-scale restoration in tropical agricultural landscapes. Front Ecol Environ 13:211–218CrossRefGoogle Scholar
  39. Leão TCC, Fonseca CR, Peres CA, Tabarelli M (2014) Predicting extinction risk of Brazilian Atlantic Forest angiosperms. Conserv Biol 28:1349–1359CrossRefPubMedGoogle Scholar
  40. Liu J, Mooney H, Hull V, Davis SJ, Gaskell J, Hertel T, Lubchenco J, Seto KC, Gleick P, Kremen C, Li S (2015) Systems integration for global sustainability. Science 347:1258832. doi: 10.1126/science.1258832 CrossRefPubMedGoogle Scholar
  41. Lôbo D, Leão TCC, Melo FPL, Santos AMM, Tabarelli M (2011) Forest fragmentation drives Atlantic forest of northeastern Brazil to biotic homogenization. Divers Distrib 17:287–296CrossRefGoogle Scholar
  42. Loyola RD (2014) Brazil cannot risk its environmental leadership. Divers Distrib 20:1365–1367CrossRefGoogle Scholar
  43. Loyola RD, Lemes P, Brum FT, Provete DB, Duarte LDS (2014) Clade-specific consequences of climate change to amphibians in Atlantic Forest protected areas. Ecography 37:65–72CrossRefGoogle Scholar
  44. Lucena AFP, Szklo AS, Schaeffer R, Souza RR, Borba BSMC, Costa IVL, Pereira AO Jr, Cunha SHF (2009) The vulnerability of renewable energy to climate change in Brazil. Energy Policy 37:879–889CrossRefGoogle Scholar
  45. Lüttge U, Garbin MA, Scarano FR (2013) Evo–Devo–Eco and ecological stem species: potential repair systems in the planetary biosphere crisis. Prog Bot 74:191–212CrossRefGoogle Scholar
  46. Magnago LFS, Magrach A, Laurance WF, Martins SV, Meira-Neto AA, Simonelli M, Edwards DP (2015) Would protecting tropical forest fragments provide carbon and biodiversity cobenefits under REDD+? Glob Change Biol. doi: 10.1111/gcb.12937 Google Scholar
  47. Magrin GO, Marengo JA, Boulanger J-P, Buckeridge MS, Castellanos E, Poveda G, Scarano FR, Vicuña S (2014) Central and South America. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge (in press)Google Scholar
  48. Martinelli G, Valente ASM, Maurenza D, Kutschenko C, Judice DM, Silva DS, Fernandez EP, Martins EM, Barros FSM, Sfair JC, Santos Filho LAF, Abreu MB, Moraes MA, Monteiro NP, Pietro PV, Fernandes RA, Hering RLO, Messina T, Penedo TSA (2013) Avaliação de risco de extinção de espécies da flora brasileira. In: Martinelli G, Moraes MA (eds) Livro vermelho da flora do Brasil. CNC Flora, Jardim Botânico do Rio de Janeiro, Andrea Jakobsson Estúdio, Rio de Janeiro, pp 60–84Google Scholar
  49. McKenna P (2010) Sylvia Earle: how not to clean up an oil spill. New Sci 207:26–27CrossRefGoogle Scholar
  50. Melo FPL, Pinto SRR, Brancalion PHS, Castro PS, Rodrigues RR, Aronson J, Tabarelli M (2013) Priority setting for scaling-up tropical forest restoration projects: early lessons from the Atlantic Forest Restoration Pact. Environ Sci Policy 33:395–404CrossRefGoogle Scholar
  51. Mesquita CAB, Veiga F, Belote T, Calmon M, Guimarães A (2010) Pagando a conta do almoço: compensação pelos serviços ambientais na Mata Atlântica. In: Marone E, Riet D, Melo T (eds) Brasil Atlântico: um país com a raiz na mata. Mar de Ideias, Instituto Bioatlântica, Rio de Janeiro, pp 262–299Google Scholar
  52. Mittermeier RA, Gil PR, Hoffmann M, Pilgrim J, Brooks T, Mittermeier CG, Lamoreux J, Fonseca GAB (2005) Hotspots revisited: earth’s biologically richest and most endangered terrestrial ecoregions, 2nd edn. CEMEX, Mexico CityGoogle Scholar
  53. Munang R, Thiaw I, Alverson K, Mumba M, Liu J, Rivington M (2013) Climate change and ecosystem-based adaptation: a new pragmatic approach to buffering climate change impacts. Curr Opin Environ Sustainabil 5:67–71CrossRefGoogle Scholar
  54. Nobre CA, Young, AF, Saldiva, P, Marengo, JA, Nobre, AD, Alves Júnior, SP, Silva, GCM, Lombardo, M (2010) Vulnerabilidades das megacidades brasileiras às mudanças climáticas: região metropolitana de São Paulo. http://mudancasclimaticas.cptec.inpe.br/~rmclima/pdfs/publicacoes/2010/SumarioExecutivo_megacidades.pdf
  55. Nogueira C, Buckup PA, Menezes NA, Oyakawa OT, Kasecker TP, Ramos Neto MB, Silva JMC (2010) Restricted-range fishes and the conservation of Brazilian freshwaters. PLoS One 5:e11390CrossRefPubMedPubMedCentralGoogle Scholar
  56. Paglia AP, Paese A, Bedê L, Fonseca M, Pinto LP, Machado R (2004) Lacunas de conservação e áreas insubstituíveis para vertebrados ameaçados da Mata Atlântica. Em Anais do IV Congresso Brasileiro de Unidades de Conservação—17 a 21 de outubro de 2004. Seminário, vol. II. Fundação O Boticário de Proteção à Natureza e Rede Pró-Unidades de Conservação, Curitiba, pp 39–50Google Scholar
  57. Paglia AP, Fonseca GAF, Silva JMC (2008) A fauna brasileira ameaçada de extinção: síntese taxonômica e geográfica. In: Machado ABM, Drummond GM, Paglia AP (eds) Livro Vermelho da Fauna Brasileira Ameaçada de Extinção. Ministério do Meio Ambiente, Brasília, pp 63–70Google Scholar
  58. Pinto LP, Bede LC, Fonseca M, Lamas I, Mesquita CA, Paglia A, Cisalpino TP (2012) Mata Atlântica. In: Scarano FR, Santos I, Martins ACI, Silva JMC, Guimarães A, Mittermeier RA (eds) Biomas Brasileiros: Retratos de um País Plural. Casa da Palavra, Conservação Internacional, Rio de Janeiro, pp 16–55Google Scholar
  59. Pinto SR, Melo F, Tabarelli M, Padovesi A, Mesquita CA, Scaramuzza CAM, Castro P, Carrascosa H, Calmon M, Rodrigues R, César RG, Brancalion PHS (2014) Governing and delivering a biome-wide restoration initiative: the case of Atlantic Forest Restoration Pact in Brazil. Forests 5:2212–2229CrossRefGoogle Scholar
  60. Pütz S, Groeneveld J, Henle K, Knogge C, Martensen AC, Metz M, Metzger JP, Ribeiro MC, de Paula MD, Huth A (2014) Long-term carbon loss in fragmented neotropical forests. Nat Commun. doi: 10.1038/ncomms6037 Google Scholar
  61. Rezende CL, Uezu A, Scarano FR, Araujo DSD (2015) Atlantic forest spontaneous regeneration at landscape scale. Biodiv Conserv. doi: 10.1007/s10531-015-0980-y
  62. Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153CrossRefGoogle Scholar
  63. Ribeiro MC, Martensen AC, Metzger JP, Tabarelli M, Scarano FR, Fortin MJ (2011) The Brazilian Atlantic Forest: a shrinking biodiversity hotspot. In: Zachos FE, Habel JC (eds) Biodiversity hotspots. Springer, Heidelberg, pp 405–434CrossRefGoogle Scholar
  64. Rodrigues RR, Gandolfi S, Nave AG, Aronson J, Barreto TE, Vidal CY, Brancalion PHS (2011) Large-scale ecological restoration of high-diversity tropical forests in SE Brazil. For Ecol Manag 261:1605–1613CrossRefGoogle Scholar
  65. Salazar LF, Nobre CA, Oyama MD (2007) Climate change consequences on the biome distribution in tropical South America. Geophys Res Lett 34:L09708. doi: 10.1029/2007GL029695 CrossRefGoogle Scholar
  66. Sansevero JBB (2013) Classificação de grupos funcionais e caracterização de trajetórias sucessionais na Floresta Atlântica. Ph.D. Thesis, Escola Nacional de Botânica Tropical, Jardim Botânico do Rio de Janeiro, Rio de JaneiroGoogle Scholar
  67. Scarano FR (2002) Structure, function and floristic relationships of plant communities in stressful habitats marginal to the Brazilian Atlantic rain forest. Ann Bot 90:517–524CrossRefPubMedPubMedCentralGoogle Scholar
  68. Scarano FR (2007) Rock outcrop vegetation in Brazil: a brief overview. Rev Brasil Bot 30:561–568CrossRefGoogle Scholar
  69. Scarano FR (2009) Plant communities at the periphery of the Atlantic rain forest: rare-species bias and its risks for conservation. Biol Conserv 142:1201–1208CrossRefGoogle Scholar
  70. Scarano FR, Garbin ML (2013) Stem species: plant species that function as regenerating cells of Gaia. Nova Acta Leopoldina NF 114:317–324Google Scholar
  71. Scarano FR, Martinelli G (2010) Brazilian list of threatened plant species: reconciling scientific uncertainty and political decision making. Natureza & Conservação 8:13–18CrossRefGoogle Scholar
  72. Scarano FR, Guimarães AL, Silva JMC (2012a) Lead by example. Nature 486:25–26CrossRefPubMedGoogle Scholar
  73. Scarano FR, Silva JMC, Guimarães AL, Raik D, Boltz F (2012b) Brazil on the spot: Rio+ 20, sustainability and a role for science. Braz J Bot 35:233–239CrossRefGoogle Scholar
  74. Shimamoto CY, Botosso PC, Marques MCM (2014) How much carbon is sequestered during the restoration of tropical forests? Estimates from tree species in the Brazilian Atlantic forest. For Ecol Manag 329:1–9CrossRefGoogle Scholar
  75. Soares-Filho B, Rajão R, Macedo M, Carneiro A, Costa W, Coe M, Rodrigues H, Alencar A (2014) Cracking Brazil’s forest code. Science 344:363–364CrossRefPubMedGoogle Scholar
  76. SOS Mata Atlântica/INPE-Instituto Nacional de Pesquisas Espaciais (2014). Atlas de remascentes florestais da Mata Atlântica, 2014. http://www.sosma.org.br/17811/divulgados-novos-dados-sobre-o-desmatamento-da-mata-atlantica/
  77. Souza TV, Lorini ML, Alves MAS, Cordeiro P, Vale MM (2011) Redistribution of threatened and endemic Atlantic forest birds under climate change. Natureza e Conservação 9:214–218CrossRefGoogle Scholar
  78. Specht MJ, Pinto SRR, Albuquerque UP, Tabarelli M, Melo FPL (2015) Burning biodiversity: fuelwood harvesting causes forest degradation in human-dominated tropical landscapes. Glob Ecol Conserv 3:200–209CrossRefGoogle Scholar
  79. Strassburg BBN, Kelly A, Balmford A, Davies RG, Gibbs HK, Lovett A, Miles L, Orme CDL, Price J, Turner RK, Rodrigues ASL (2010) Global congruence of carbon storage and biodiversity in terrestrial ecosystems. Conserv Lett 3:98–105CrossRefGoogle Scholar
  80. Strassburg BBN, Latawiec AE, Barioni LG, Nobre CA, Silva VP, Valentim JF, Vianna M, Assad ED (2014) When enough should be enough: improving the use of current agricultural lands could meet production demands and spare natural habitats in Brazil. Glob Environ Change 28:84–97CrossRefGoogle Scholar
  81. Tacconi L (2012) Redefining payments for environmental services. Ecological Economics 73:29–36CrossRefGoogle Scholar
  82. Torres RR, Lapola DM, Marengo JA, Lombardo MA (2012) Socio-climatic hotspots in Brazil. Clim Change 115:597–609CrossRefGoogle Scholar
  83. Vignola R, Locatelli B, Martinez C, Imbach P (2009) Ecosystem-based adaptation to climate change: what role for policy-makers, society and scientists? Mitig Adapt Strat Glob Change 14:691–696CrossRefGoogle Scholar
  84. Vitule JRS, Azevedo-Santos VM, Daga VS, Lima-Junior DP, Magalhães ALB, Orsi ML, Pelicice FM, Agostinho AA (2015) Brazil’s drought: protect biodiversity. Science 347:1427–1428CrossRefPubMedGoogle Scholar
  85. Webb TJ, Woodward FI, Hannah L, Gaston KJ (2005) Forest cover-rainfall relationships in a biodiversity hotspot: the Atlantic forest of Brazil. Ecol Appl 15:1968–1983CrossRefGoogle Scholar
  86. Williams KJ, Ford A, Rosauer DF, De Silva N, Mittermeier R, Bruce C, Larsen FW, Margules C (2011) Forests of East Australia: the 35th biodiversity hotspot. In: Zachos FE, Habel JC (eds) Biodiversity hotspots. Springer, Heidelberg, pp 295–310CrossRefGoogle Scholar
  87. Young CEF (2003) Socioeconomic causes of deforestation in the Atlantic forest of Brazil. In: Galindo-Leal C, Câmara IG (eds) The Atlantic forest of South America: biodiversity status, threat and outlook. Island Press, Conservation International, Washington, pp 103–117Google Scholar
  88. Young CEF, Bakker LB (2014) Payments for ecosystem services from watershed protection: a methodological assessment of the Oasis Project in Brazil. Natureza e Conservação 12:71–78CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Fundação Brasileira para o Desenvolvimento SustentávelRio de JaneiroBrazil
  2. 2.Departamento de Ecologia, IB, CCSUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  3. 3.Conservation InternationalRio de JaneiroBrazil

Personalised recommendations