Biodiversity and Conservation

, Volume 24, Issue 9, pp 2305–2318 | Cite as

Microclimatic conditions at forest edges have significant impacts on vegetation structure in large Atlantic forest fragments

  • Luiz Fernando Silva Magnago
  • Mariana Ferreira Rocha
  • Leila Meyer
  • Sebastião Venâncio Martins
  • João Augusto Alves Meira-Neto
Original Paper


Forest fragmentation creates forest edges, and the effect of those edges increases as the size of forest fragments decreases. Edge effects include changes to microclimatic conditions at the forest edge, which affect vegetation structure. No previous studies have directly tested the relationship between microclimate and vegetation structure (for instance, basal area, trees mean height, dead trees and damage trees) at the edge of forest fragments in the Atlantic Forest domain. We tested the following three hypotheses: (i) the microclimatic conditions differ between the edge and the interior of the forest, (ii) the forest structure differs between the edge and the interior of the forest and (iii) changes to microclimatic conditions at the forest edge negatively affect vegetation structure at the edges. Our results demonstrate that edge habitats are significantly more susceptible to strong winds, lower humidity and higher air temperatures than forest interiors. The microclimate may be considered the principal factor that explains the difference between the vegetation structure of the forest edge and the forest interior. Our results suggest that even large forest fragments in the Brazilian Atlantic Forest may be impacted by negative edge effects.


Edge effects Forest fragmentation Basal area Wind disturbance Dead trees Tableland forest 



We are grateful to CAPES for a doctoral scholarship in Brazil and for an overseas doctoral scholarship (the Sandwich Program) provided to the first and second authors. We thank the Projeto Floresta-Escola, FAPEMIG and CNPQ (Grant No. 477780/2009-1) for financial support. We thank Vale Natural Reserve, especially Gilberto Terra, for logistical support. We thank Sooretama Biological Reserve for allowing us to conduct this study, and Fibria Celulose S. A. for logistical support and for access to the study areas. We also thank Fabio A. Matos, Renata Pagotto, Vinicius Guss, Stephano, Glaúcia Tolentino, Túlio, Átila, Talissa Harb and Domingos Folli, among others, for their help with field activities. JAAMN was awarded a CNPq scholarship for scientific productivity. LFSM is supported by a PNPD program of CAPES. MFR was supported by Floresta Ecolola project.

Supplementary material

10531_2015_961_MOESM1_ESM.doc (85 kb)
Supplementary material 1 (DOC 85 kb)


  1. Bennett AF, Saunders DA (2010) Habitat fragmentation and landscape change. In: Sodhi N, Ehrlich P (eds) Conservation biology for all. Oxford University Press, Oxford, pp 88–106CrossRefGoogle Scholar
  2. Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632CrossRefPubMedGoogle Scholar
  3. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  4. Camargo JLC, Kapos V (1995) Complex edge effects on soil moisture and microclimate in central Amazonian forest. J Trop Ecol 11:205–211CrossRefGoogle Scholar
  5. Carvalho WAC, Oliveira-Filho AT, Fontes MAL, Curi N (2007) Variação espacial da estrutura da comunidade arbórea de um fragmento de floresta semidecídua em Piedade do Rio Grande, MG, Brasil. Rev Bras Bot 30:315–335Google Scholar
  6. Chave J, Andalo C, Brown S, Cairns MA et al (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oceologia 145:87–99CrossRefGoogle Scholar
  7. Chen J, Franklin JF, Spies TA (1993) Contrasting microclimates among clearcut, edge, and interior of old growth Douglas-fir forest. Agric For Meteorol 63:219–237CrossRefGoogle Scholar
  8. Chiarello AG (1999) Effects of fragmentation of the Atlantic forest on mammal communities in southeastern Brazil. Biol Conserv 89:71–82CrossRefGoogle Scholar
  9. Crawley MJ (2007) The R Book. John Wiley & Sons, West SussexGoogle Scholar
  10. D’Angelo SA, Andrade ACS, Laurance SG, Laurance WF, Mesquita RCG (2004) Inferred causes of tree mortality in fragmented and intact Amazonian forests. J Trop Ecol 20:243–246Google Scholar
  11. Davies-Colley RJ, Payne GW, Van Elswijk M (2000) Microclimate gradients across a forest edge. N Z J Ecol 24:111–121Google Scholar
  12. Diniz-Filho JAF, Bini LM, Hawkins BA (2003) Spatial autocorrelation and red herrings in geographical ecology. Glob Ecol Biogeogr 12:53–64CrossRefGoogle Scholar
  13. Diniz-Filho JAF, Rangel TFLVB, Bini LM (2008) Model selection and information theory in geographical ecology. Glob Ecol Biogeogr 17:479–488CrossRefGoogle Scholar
  14. Dray S, Legendre P, Peres-Neto P (2006) Spatial modeling: a comprehensive framework for principal coordinate analysis of neighbor matrices (PCNM). Ecol Model 196:483–493CrossRefGoogle Scholar
  15. Eisenlohr PV (2014) Persisting challenges in multiple models: a note on commonly unnoticed issues regarding collinearity and spatial structure of ecological data. Braz J Bot. doi: 10.1007/s40415-014-0064-3 Google Scholar
  16. Ewers RM, Banks-Leite C (2013) Fragmentation impairs the microclimate buffering effect of tropical forests. PLoS One 8(3):e58093CrossRefPubMedCentralPubMedGoogle Scholar
  17. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Ann Rev Ecol Evol Syst 34:487–515CrossRefGoogle Scholar
  18. Ferreira LV, Laurance WF (1997) Effects of forest fragmentation on mortality and damage of selected tree in central Amazonia. Conserv Biol 20:243–246Google Scholar
  19. Fortin MJ, Dale MRT (2005) Spatial analysis: a guide for ecologists. Cambridge University Press, CambridgeGoogle Scholar
  20. Gibson L, Lee TM, Koh LP et al (2011) Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478:378–381CrossRefPubMedGoogle Scholar
  21. Grime JP (2001) Plant strategies, vegetation processes, and ecosystem properties, 2nd edn. Wiley, ChichesterGoogle Scholar
  22. Harper KA, Macdonald SE, Burton PJ et al (2005) Edge influence on forest structure and composition in fragmented landscapes. Conserv Biol 19:768–782CrossRefGoogle Scholar
  23. IBGE (Fundação Instituto Brasileiro de Geografia e Estatística) (1987) Folha SF.34 Rio Doce: geologia, geomorfologia, pedologia, vegetação e uso potencial da terra. Projeto Radambrasil, Rio de JaneiroGoogle Scholar
  24. Kapos V (1989) Effects of isolation on the water status of forest patches in the Brazilian Amazon. J Trop Ecol 5:173–185CrossRefGoogle Scholar
  25. Laurance WF, Curran TJ (2008) Impacts of wind disturbance on fragmented tropical forests: a review and synthesis. Austral Ecol 33:399–408CrossRefGoogle Scholar
  26. Laurance WF, Laurance SG, Ferreira LV, RankindeMerona JM, Gascon C, Lovejoy TE (1997) Biomass collapse in Amazonian forest fragments. Science 278:1117–1118CrossRefGoogle Scholar
  27. Laurance WF, Ferreira LV, Merona JMR, Laurance SG (1998) Rain forest fragmentation and the dynamics of Amazonian tree communities. Ecology 79:2032–2040CrossRefGoogle Scholar
  28. Laurance WF, Delamonica P, Laurance SG, Vasconcelos HL, Lovejoy TE (2000) Rainforest fragmentation kills big trees. Nature 404(6780):836CrossRefPubMedGoogle Scholar
  29. Laurance WF, Williamson GB, Delamonica P, Oliveira A, Lovejoy TE, Gascon C, Pohl L (2001) Effects of a strong drought on Amazonian forest fragments and edges. J Trop Ecol 17:771–785CrossRefGoogle Scholar
  30. Laurance WF, Lovejoy TE, Vasconcelos HL, Bruna EM, Didham RK, Stouffer PC, Gascon C, Bierregaard RO, Laurance SG, Sampaio E (2002) Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conserv Biol 16:605–618CrossRefGoogle Scholar
  31. Laurance WL et al (2004) Pervasive alteration of tree communities in undisturbed Amazonian forests. Nature 428:171–175CrossRefPubMedGoogle Scholar
  32. Laurance WF, Nascimento H, Laurance SG, Andrade A, Ribeiro J, Giraldo J, Lovejoy TE, Condit R, Chave J, D’Angelo S (2006) Rapid decay of tree community composition in Amazonian forest fragments. Proc Natl Sci USA 103:19010–19014CrossRefGoogle Scholar
  33. Laurance WF, Nascimento HEM, Laurance SG, Andrade A, Ewers RM (2007) Habitat fragmentation, variable edge effects, and the landscape-divergence hypothesis. PLoS One 2(10):e1017CrossRefPubMedCentralPubMedGoogle Scholar
  34. Laurance SGW et al (2009) Long-term variation in Amazon forest dynamics. J Veg Sci 20:323–333CrossRefGoogle Scholar
  35. Laurance WF, Camargo JLC, Luizão RCC, Laurance SG et al (2011) The fate of Amazonian forest fragments: a 32-year investigation. Biol Conserv 144:56–67CrossRefGoogle Scholar
  36. Magnago LFS, Edwards DP, Edwards FA, Magrach A, Martins SV, Laurance WF (2014) Functional attributes change but functional richness is unchanged after fragmentation of Brazilian Atlantic forests. J Ecol 102(2):475–485CrossRefGoogle Scholar
  37. Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Tree 10:58–62PubMedGoogle Scholar
  38. Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefPubMedGoogle Scholar
  39. O’Brien ST, Hubbell SP, Condit PSR, Foster RB (1995) Diameter, height, crown, and age relationship in eight neotropical tree species. Ecology 76:1926–1939CrossRefGoogle Scholar
  40. Oosterhoorn M, Kappelle M (2000) Vegetation structure and composition along an interior-edge-exterior gradient in a Costa Rican montane cloud forest. For Ecol Manag 126:291–307CrossRefGoogle Scholar
  41. Pardini R, Bueno ADA, Gardner TA, Prado PI, Metzger JP (2010) Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes. PLoS One 5(10):e13666CrossRefPubMedCentralPubMedGoogle Scholar
  42. Peixoto AL, Silva IM (1997) Tabuleiro forests of northern Espirito Santo, Southeastern Brasil. In: Davis SD, Heywood VH (eds) Centres of plant diversity—a guide and strategy for their conservation, 1st edn. WWF and IUCN Publisher, Cambridge, pp 369–372Google Scholar
  43. Peixoto AL, Simonelli M (2007) Florestas de Tabuleiro. In: Simonelli M, Fraga CN (eds) Espécies da flora ameaçadas de extinção no estado do Espírito Santo, 1st edn. IPEMA, Vitória, pp 33–44Google Scholar
  44. Peixoto AL, Silva I, Pereira OJ, Simonelli M, Jesus RM, Rolim SG (2008) Tabuleiro Forests North of the Rio Doce: Their Representation in the Vale do Rio Doce Natural Reserve, Espírito Santo, Brazil. Memoirs of the New York Botanical Garden, New York, pp 319–350Google Scholar
  45. Peres-Neto PR, Legendre P (2010) Estimating and controlling for spatial structure in the study of ecological communities. Glob Ecol Biogeogr 19:174–184CrossRefGoogle Scholar
  46. Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625CrossRefPubMedGoogle Scholar
  47. Phillips OL, Malhi Y, Higuchi N et al (1998) Changes in the carbon balance of tropical forests: evidence from long-term plots. Science 282:439–442CrossRefPubMedGoogle Scholar
  48. Pinto SRR, Mendes G, Santos AMM, Dantas M, Tabarelli M, Melo FPL (2010) Landscape attributes drive complex spatial microclimate configuration of Brazilian Atlantic forest fragments. Trop Conserv Sci 3:389–402Google Scholar
  49. Pütz S, Groeneveld J, Alves LF, Metzger JP, Huth A (2011) Fragmentation drives tropical forest fragments to early successional states: a modelling study for Brazilian Atlantic forests. Ecol Model 222(24):1986–1997CrossRefGoogle Scholar
  50. Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  51. Ramos FN, Santos FAM (2006) Microclimate of Atlantic forest fragments: regional and local scale heterogeneity. Braz Arch Biol Technol 49:935–944CrossRefGoogle Scholar
  52. Rangel TFLVB, Diniz-Filho JAF, Bini LM (2010) SAM: a comprehensive application for spatial analysis in macroecology. Ecography 33:46–50CrossRefGoogle Scholar
  53. Ribeiro MC, Metzer JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153CrossRefGoogle Scholar
  54. Rolim SG, Jesus RM, Nascimento HEM, Couto HTZ, Chambers JQ (2005) Biomass change in an Atlantic tropical moist forest: the ENSO effect in permanent sample plots over a 22 year period. Oecologia 142:387–410Google Scholar
  55. Santos GGA, Santos BA, Nascimento HEM, Tabarelli M (2012) Contrasting demographic structure of short- and long-lived pioneer tree species on Amazonian forest edges. Biotropica 44:771–778Google Scholar
  56. Srbek-Araujo AC, Chiarello AG (2006) Registro recente de harpia, Harpia harpyja (Linnaeus) (Aves, Accipitridae), na Mata Atlântica da Reserva Natural Vale do Rio Doce, Linhares, Espírito Santo e implicações para a conservação regional da espécie. Rev Bras Zool 23:1264–1267CrossRefGoogle Scholar
  57. Tabarelli M, Mantovani W, Peres CA (1999) Effects of habitat fragmentation on plant guild structure in the montane Atlantic forest of southeastern Brazil. Biol Conserv 91:119–127CrossRefGoogle Scholar
  58. Tabarelli M, Silva MJC, Gascon C (2004) Forest fragmentation, synergisms and the impoverishment of neotropical forests. Biodivers Conserv 13:1419–1425CrossRefGoogle Scholar
  59. The R Foundation for Statistical Computing (2014) R: a language and environment for statistical computing. Vienna (Austria). Accessed 15 Apr 2014
  60. Turton SM, Freiburger HJ (1997) Edge and aspect effects on the microclimate of a small tropical forest remnant on the Atherton Tableland, Northeastern Australia. In: Laurance WF, Bierregaard RO Jr (eds) Tropical forest remnants. Ecology, management and conservation of fragmented communities. University of Chicago Press, Chicago, pp 45–54Google Scholar
  61. Van Den Berg E, Oliveira-Filho AT (1999) Spatial partitioning among tree species within an area of tropical montane gallery forest in south-eastern Brazil. Flora 194(2/3):249–266Google Scholar
  62. Williams-Linera G (1990) Vegetation structure and environmental conditions of forest edges in Panama. J Ecol 78:356–373CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Luiz Fernando Silva Magnago
    • 1
    • 2
    • 3
  • Mariana Ferreira Rocha
    • 1
    • 3
  • Leila Meyer
    • 4
  • Sebastião Venâncio Martins
    • 5
  • João Augusto Alves Meira-Neto
    • 1
  1. 1.Laboratory of Ecology and Evolution of Plants - LEEPUniversidade Federal de ViçosaViçosaBrazil
  2. 2.Setor de Ecologia e Conservação, Departamento de BiologiaUniversidade Federal de LavrasLavrasBrazil
  3. 3.Centre for Tropical Environmental and Sustainability Science (TESS) and School of Marine and Tropical BiologyJames Cook UniversityCairnsAustralia
  4. 4.Departamento de BotânicaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  5. 5.Departamento de Engenharia Florestal da Universidade Federal de ViçosaViçosaBrazil

Personalised recommendations