Biodiversity and Conservation

, Volume 24, Issue 8, pp 1989–2009 | Cite as

Sphagnum farming: the promised land for peat bog species?

  • Christoph Muster
  • Greta Gaudig
  • Matthias Krebs
  • Hans Joosten
Original Paper

Abstract

Sphagnum farming is a promising approach towards sustainability in growing media production for horticulture. In this study we focus on the additional value of Sphagnum farming sites as a surrogate habitat for threatened peat bog fauna. The highly diverse arthropod groups of spiders and harvestmen were used as bioindicators to track changes in species assemblages over the first 3 years of Sphagnum farming on a site in northwestern Germany. The results were compared with simultaneously studied reference habitats of nearby bog grasslands and degraded peat bog remnants. Spider communities changed rapidly from assemblages dominated by disturbance specialists (pioneer species) in the year of artificial Sphagnum establishment to diverse assemblages with large proportions of peatland generalists in the following years. Conservation value based on rarity, Red List status, disturbance tolerance and peatland association of individual species was in the later stage of Sphagnum farming as high as in the seminatural reference sites. Species quality index as derived from rarity scores was particularly high in the first year of succession due to the occurrence of some rare disturbance specialists. Despite the fact that each succession stage has its own conservation value, we advocate long rotation cycles in Sphagnum farming to allow establishment of slowly colonizing peatland specialists. We generally recommend the establishment of Sphagnum farms on degraded peatland, as creation of this artificial habitat promotes landscape and species diversity and provides refuges for endangered species of peatland and ephemeral habitats.

Keywords

Araneae Bioindication Mire conservation Paludiculture Spider community succession Surrogate habitat 

Supplementary material

10531_2015_922_MOESM1_ESM.pdf (82 kb)
Supplementary material 1 (PDF 82 kb)

References

  1. Alexander PD, Bragg NC, Meade R, Padelopoulos G, Watts O (2008) Peat in horticulture and conservation: the UK response to a changing world. Mires Peat 3(8):1–10Google Scholar
  2. Andersen MJ (2001) A new method for non-parametric multivariate analysis of variance. Aust Ecol 26:32–46CrossRefGoogle Scholar
  3. Bauchhenss E (1990) Mitteleuropäische Xerotherm-Standorte und ihre epigäische Spinnenfauna—eine autökologische Betrachtung. Abhandlungen des naturwissenschaftlichen Vereins in Hamburg (NF) 31/32:153–162Google Scholar
  4. Beck J, Pfiffner L, Ballesteros-Mejia L, Blick T, Luka H (2013) Revisiting the indicator problem: can three epigean arthropod taxa inform about each other’s biodiversity? Divers Distrib 19:688–699. doi:10.1111/ddi.12021 CrossRefGoogle Scholar
  5. Bell JR, Bohan DA, Shaw EM, Weyman GS (2005) Ballooning dispersal using silk: world fauna, phylogenies, genetics and models. Bull Entomol Res 95:69–114PubMedCrossRefGoogle Scholar
  6. Blandenier G (2009) Ballooning of spiders (Araneae) in Switzerland: general results from an eleven-year survey. Bull Br Arachnol Soc 14:308–316CrossRefGoogle Scholar
  7. Blick T, Finch O-D, Harms KH, Kiechle J, Kielhorn K-H, Kreuels M, Malten A, Martin D, Muster C, Nährig D, Platen R, Rödel I, Scheidler M, Staudt A, Stumpf H, Tolke D (2015) Rote Liste und Gesamtartenliste der Spinnen (Arachnida: Araneae) Deutschlands. Naturschutz und Biologische Vielfalt (in press)Google Scholar
  8. Blievernicht A, Irrgang S, Zander M, Ulrichs C (2011) Produktion von Torfmoosen (Sphagnum sp.) als Torfersatz im Erwerbsgartenbau. Gesunde Pflanze 4:125–131CrossRefGoogle Scholar
  9. Blievernicht A, Irrgang S, Zander M, Ulrichs C (2013) Sphagnum biomass—the next generation of growing media. Peatl Int 1(2013):32–35Google Scholar
  10. Bonte D, Vandenbroecke N, Lens L, Maelfait J-P (2003) Low prospensity for aerial dispersal in specialist spiders from fragmented landscapes. Proc Roy Soc Lond B 270:1601–1607CrossRefGoogle Scholar
  11. Bormann FH, Likens GE (1979) Pattern and process in a forested ecosystem. Springer, New YorkCrossRefGoogle Scholar
  12. Bristowe WS (1923) Spiders found in the neighbourhood of Oxshott. Proc South Lond Entomol Nat Hist Soc 1922:1–11Google Scholar
  13. Buchar J, Růžička V (2002) Catalogue of spiders of the Czech Republic. Peres Publishers, PrahaGoogle Scholar
  14. Buchholz S, Schröder M (2013) Diversity and ecology of spider assemblages of a Mediterranean wetland complex. J Arachnol 41:364–373CrossRefGoogle Scholar
  15. Caron J, Rochefort L (2013) Use of peat in growing media: state of the art on industrial and scientific efforts envisioning sustainability. Acta Hortic 982:15–22Google Scholar
  16. Chao A, Jost L (2012) Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93:2533–2547PubMedCrossRefGoogle Scholar
  17. Chao A, Gotelli NJ, Hsieh TC, Sander EL, Ma KH, Colwell RK, Ellison AM (2014) Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr 84:45–67CrossRefGoogle Scholar
  18. De Cáceres M, Jansen F (2014) Indicspecies: studying the statistical relationship between species and groups of sites. R package version 1.7.2Google Scholar
  19. De Cáceres M, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90:3566–3574PubMedCrossRefGoogle Scholar
  20. De Cáceres M, Legendre P, Moretti M (2010) Improving indicator species analysis by combining groups of sites. Oikos 119:1674–1684CrossRefGoogle Scholar
  21. Desrochers A, van Duinen GA (2006) Peatland fauna. In: Wieder RK, Vitt DH (eds) Boreal peatland ecosystems. Ecological studies, vol 18. Springer, New York, pp 67–100CrossRefGoogle Scholar
  22. Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366Google Scholar
  23. Emmel M (2008) Growing ornamental plants in biomass. Acta Hortic 779:173–178Google Scholar
  24. Eyre MD, Luff ML, Woodward JC (2003) Beetles (Coleoptera) on brownfield sites in England: an important conservation resource? J Insect Conserv 7:223–231CrossRefGoogle Scholar
  25. Foster GN (1987) The use of Coleoptera records in assessing the conservation status ot wetlands. In: Luff ML (ed) Proceedings of a meeting of the agricultural environment research group ‘the use of invertebrates in site assessment for conservation’. University of Newcastle upon Tyne, Newcastle upon Tyne, pp 8–18Google Scholar
  26. Foster GN, Foster AP, Eyre MD, Bilton DT (1990) Classification of water beetle assemblages in arable fenland and ranking of sites in relation to conservation value. Freshw Biol 22:343–354CrossRefGoogle Scholar
  27. Gaudig G, Joosten H (2002) Peat moss (Sphagnum) as a renewable resource—an alternative to Sphagnum peat in horticulture. In: Schmilewski G, Rochefort L (eds) Peat in horticulture. Quality and environmental challenges. International Peat Society, Jyväskylä, pp 117–125Google Scholar
  28. Gaudig G, Joosten H, Kamermann D (2008) Growing growing media: promises of Sphagnum biomass. Acta Hortic 779:165–171Google Scholar
  29. Gaudig G, Fengler F, Krebs M, Prager A, Schulz J, Wichmann S, Joosten H (2014) Sphagnum farming in Germany—a review of progress. Mires Peat 13:1–11Google Scholar
  30. Gerlach J, Samways M, Pryke J (2013) Terrestrial invertebrates as bioindicators: an overview of available taxonomic groups. J Insect Conserv 17:831–850CrossRefGoogle Scholar
  31. González E, Henstra SW, Rochefort L, Bradfield GE, Poulin M (2014) Is rewetting enough to recover Sphagnum and associated peat-accumulating species in traditionally exploited bogs? Wetl Ecol Manage 22:49–62CrossRefGoogle Scholar
  32. Gossner MM, Fonseca CR, Pašalić E, Türke M, Lange M, Weisser WW (2014) Limitations to the use of arthropods as temperate forests indicators. Biodivers Conserv 23:945–962CrossRefGoogle Scholar
  33. Haase H, Balkenhol B (2015) Spiders (Araneae) as subtle indicators for successional stages in peat bogs. Wetl Ecol Manage. doi:10.1007/s11273-014-9394-y Google Scholar
  34. Hill MO, Gauch HG (1980) Detrended correspondence analysis: an improved ordination technique. Vegetatio 42:47–58CrossRefGoogle Scholar
  35. Hsieh TC, Ma KH, Chao A (2013) iNEXT online: interpolation and extrapolation (Version 1.3.0). http://glimmer.rstudio.com/tchsieh/inext/. Accessed 18 Aug 2014
  36. Joosten H, Clarke D (2002) Wise use of mires and peatlands—background and principles including a framework for decision-making. International Mire Conservation Group and International Peat Society, SaarijärviGoogle Scholar
  37. Joosten H, Tapio-Biström ML, Tol S (eds) (2012) Peatlands—guidance for climate change mitigation by conservation and rehabilitation and sustainable use. Food and Agricultural Organization of the UN, Rome, p 110Google Scholar
  38. Key R (2000) Bare ground and the conservation of invertebrates. Br Wildl 11:183–191Google Scholar
  39. Koponen S (2002) Ground-living spiders in bogs in northern Europe. J Arachnol 30:262–267CrossRefGoogle Scholar
  40. Krebs M, Gaudig G, Joosten H (2012) Sphagnum farming on bog grassland in Germany—first results. In: Proceedings of the 14th International Peat Congress, StockholmGoogle Scholar
  41. Landry J, Pouliot R, Gaudig G, Wichman S, Rochefort L (2010) Sphagnum farming workshop in the Canadian Maritimes: a chance to overview the international research efforts and challenges. Peatl Int 2(2011):28–33Google Scholar
  42. Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280CrossRefGoogle Scholar
  43. Martens J (1978) Weberknechte, Opiliones – Spinnentiere, Arachnida. Tierwelt Deutschlands 64:1–464Google Scholar
  44. Mazerolle MJ, Poulin M (2007) Persistence and colonization as measures of success in bog restoration for aquatic invertebrates: a question of detection. Freshw Biol 52:383–385CrossRefGoogle Scholar
  45. Mazerolle MJ, Poulin M, Lavoie C, Rochefort L, Desrochers A, Drolet B (2006) Animal and vegetation patterns in natural and man-made bog pools: implications for restoration. Freshw Biol 51:333–350CrossRefGoogle Scholar
  46. McGeoch MA (1998) The selection, testing and application of terrestrial insects as bioindicators. Biol Rev 73:181–201CrossRefGoogle Scholar
  47. Muster C, Meyer M, Sattler T (2014) Spatial arrangement overrules environmental factors to structure native and non-native assemblages of synanthropic harvestmen. PLoS One 9(3):e90474PubMedCentralPubMedCrossRefGoogle Scholar
  48. Muster C, Blick T, Schönhofer A (2015) Rote Liste und Gesamtartenliste der Weberknechte (Arachnida: Opiliones) Deutschlands. Naturschutz und Biologische Vielfalt (in press)Google Scholar
  49. Nentwig W, Blick T, Gloor D, Hänggi A, Kropf C (2014) Araneae—spiders of Europe. http://www.araneae.unibe.ch. Accessed 14 Aug 2014
  50. Oberpaur C, Puebla V, Vaccarezza F, Arévalo ME (2010) Preliminary substrate mixtures including peat moss (Sphagnum magellanicum) for vegetable crop nurseries. Cienc Investig Agrar 37:123–132Google Scholar
  51. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) Vegan: community ecology package. R package version 2.0-10Google Scholar
  52. Peet RK, Knox RG, Case JS, Allen RB (1988) Putting things in order: the advantages of detrended correspondence analysis. Am Nat 131:924–934CrossRefGoogle Scholar
  53. Platen R (2004) Spider assemblages (Arachnida: Araneae) as indicators for degraded oligotrophic moors in north-east Germany. Arthropoda Selecta Special Issue No. 1. In: Proceedings of the 21st European Colloquium of Arachnology, St.-Petersburg, 4–9 August 2003, pp 249–260Google Scholar
  54. Platen R, von Broen B, Herrmann A, Ratschker UM, Sacher P (1999) Gesamtartenliste und Rote Liste der Webspinnen, Weberknechte und Pseudoskorpione des Landes Brandenburg (Arachnida: Araneae, Opiliones, Pseudoscorpiones) mit Angaben zur Häufigkeit und Ökologie. Naturschutz und Landschaftspflege in Brandenburg 8(Supplement):1–79Google Scholar
  55. Poulin M, Andersen R, Rochefort L (2012) A new approach for tracking vegetation change after restoration: a case study with peatlands. Restor Ecol 21:363–371CrossRefGoogle Scholar
  56. Pouliot R, Hugron S, Rochefort L (2014) Sphagnum farming: a long-term study on producing peat moss biomass sustainably. Ecol Eng 74:135–147CrossRefGoogle Scholar
  57. Pryke JS, Samways MJ (2012) Importance of using many taxa and having adequate controls for monitoring impacts of fire for arthropod conservation. J Insect Conserv 16:177–185CrossRefGoogle Scholar
  58. Puzin C, Leroy B, Pétillon J (2014) Intra- and inter-specific variation in size and habitus of two sibling spider species (Araneae: Lycosidae): taxonomic and biogeographic insights from sampling across Europe. Biol J Linn Soc 113:85–96CrossRefGoogle Scholar
  59. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed 12 Nov 2013
  60. Relys V, Koponen S, Dapkus D (2002) Annual differences and species turnover in peat bog spider communities. J Arachnol 30:416–424CrossRefGoogle Scholar
  61. Riecken U, Finck P, Raths U, Schröder E, Ssymank A (2006) Rote Liste der gefährdeten Biotoptypen Deutschlands. Zweite fortgeschriebene Fassung 2006. Naturschutz und Biologische Vielfalt 34:1–318Google Scholar
  62. Roberts MJ (1998) Spinnengids. Tirion Natuur, BaarnGoogle Scholar
  63. Samu F, Szinetár C (2002) On the nature of agrobiont spiders. J Arachnol 30:389–402CrossRefGoogle Scholar
  64. Schikora H-B (1995) Intraspecific variation in taxonomic characters, and notes on distribution and habitats of Meioneta mossica Schikora and M. saxatilis (Blackwall), two closely related spiders from northern and central Europe (Araneae: Linyphiidae). Bull Br Arachnol Soc 10:65–74Google Scholar
  65. Schikora H-B (2002) Bodenlebende Spinnen als Element der Effizienzkontrolle bei Revitalisierungsvorhaben: Beispiel Rehberger Sattelmoor (Harz, Niedersachsen). Telma 32:175–190Google Scholar
  66. Schikora H-B (2003) Spinnen (Arachnida, Araneae) nord- und mitteleuropäischer Regenwasser moore entlang ökologischer und geographischer Gradienten. Verlag Mainz, Wissenschaftsverlag, AachenGoogle Scholar
  67. Schmidt MH, Roschewitz I, Thies C, Tscharntke T (2005) Differential effects of landscape and management on diversity and density of ground-dwelling farmland spiders. J Appl Ecol 42:281–287CrossRefGoogle Scholar
  68. Schmilewski G (2008) The role of peat in assuring the quality of growing media. Mires Peat 3:1–8Google Scholar
  69. Scott AG, Oxford GS, Selden PA (2006) Epigeic spiders as ecological indicators of conservation value for peat bog. Biol Conserv 127:420–428CrossRefGoogle Scholar
  70. Staudt A (2014) Nachweiskarten der Spinnentiere Deutschlands (Arachnida: Araneae, Opiliones, Pseudoscorpiones). http://www.spiderling.de/arages. Accessed 18 Aug 2014
  71. Van Duinen GA, Brock AMT, Kuper JT, Leuven RSEW, Peeters TMJ, Roelofs JGM, van der Velde G, Verberk WCEP, Esselink H (2003) Do restoration measures rehabilitate fauna diversity in raised bogs? A comparative study on aquatic macroinvertebrates. Wetl Ecol Manage 11:447–459CrossRefGoogle Scholar
  72. Van Duinen GA, Verberk WCEP, Esselink H (2007) Persistence and recolonisation determine success of bog restoration for aquatic invertebrates: a comment on Mazerolle et al. (2006). Freshw Biol 52:381–382Google Scholar
  73. Verberk WCEP, van Duinen GA, Brock AMT, Leuven RSEW, Siepel H, Verdonschot PFM, van der Velde G, Esselink H (2006) Importance of landscape heterogeneity for the conservation of aquatic macroinvertebrate diversity in bog landscapes. J Nat Conserv 14:78–90CrossRefGoogle Scholar
  74. Wijnhoven H (2009) De Nederlanske hooiwagens (Opiliones). Entomologische Tabellen (supplement bij Nederlanske Faunistische Mededelingen) 3:1–118Google Scholar
  75. Wijnhoven H, Schönhofer AL, Martens J (2007) An unidentified harvestman Leiobunum sp. alarmingly invading Europe (Arachnida: Opiliones). Arachnologische Mitteilungen 34:27–38CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Christoph Muster
    • 1
  • Greta Gaudig
    • 2
  • Matthias Krebs
    • 2
  • Hans Joosten
    • 2
  1. 1.Zoological Institute and MuseumUniversity of GreifswaldGreifswaldGermany
  2. 2.Institute of Botany and Landscape Ecology, Partner in the Greifswald Mire CentreUniversity of GreifswaldGreifswaldGermany

Personalised recommendations