Biodiversity and Conservation

, Volume 24, Issue 8, pp 1843–1857 | Cite as

The silent extinction: climate change and the potential hybridization-mediated extinction of endemic high-mountain plants

  • José M. Gómez
  • Adela González-Megías
  • Juan Lorite
  • Mohamed Abdelaziz
  • Francisco Perfectti
Review Paper

Abstract

Most global-warming models predict an altitudinal movement of plants. This upward migration of lowland species will surely result in contact with related species inhabiting high-mountain ecosystems. We propose that an overlooked consequence of this upland movement is the possibility for interspecific hybridization between narrowly endemic alpine plants and widely distributed lowland plants. Genetic swamping due to introgressive hybridization might even lead to the genetic extinction of the endemic species, without any apparent detrimental demographic effect. Unfortunately, this phenomenon has long been ignored in the ecological literature, probably because is widely assumed that the ecological effects of climate change are more detrimental than its genetic effects. We tested our idea by searching for human-induced hybridization in a worldwide hotspot biodiversity, the high-mountains of the Sierra Nevada (south-eastern Spain). About 25 % of the endemic flora is already hybridizing in these mountains, mostly with widespread lowland congeners. Some species are even already threatened due to genetic swamping. It is thereby urgent including in future conservation agendas a protocol for detecting and monitoring positive and negative effects of genetic swamping mediated by climate change in high mountains and other sensitive ecosystems.

Keywords

Altitudinal movements Global warming Introgression Plant conservation policy Sierra Nevada 

Supplementary material

10531_2015_909_MOESM1_ESM.xls (113 kb)
Supplementary material 1 (XLS 113 kb)

References

  1. Allendorf FW, Leary RF, Spruell P, Wenburg JK (2001) The problems with hybrids: setting conservation guidelines. Trends Ecol Evol 16:615–622CrossRefGoogle Scholar
  2. Arnold ML (2006) Evolution through genetic exchange. Oxford University Press, OxfordGoogle Scholar
  3. Bañares A, Blanca G, Güemes J, Moreno JC, Ortiz S (2003) Atlas y libro rojo de la flora vascular amenazada de España. Dirección General de Conservación de la Naturaleza, New MadridGoogle Scholar
  4. Beatty GA, Barker L, Chen PP, Kelleher CT, Provan J (2015) Cryptic introgression into the Kidney saxifrage (Saxifraga hirsuta) from its more abundant sympatric congener Saxifraga spathularis, and the potential risk of genetic assimilation. Ann Bot 115:179–186PubMedCrossRefGoogle Scholar
  5. Becker M, Gruenheit N, Steel M, Voelckel C, Deusch O, Heenan PB, McLenachan PA, Kardailsky O, Leigh JW, Lockhar PJ (2013) Hybridization may facilitate in situ survival of endemic species through periods of climate change. Nat Clim Change 3:1039–1043CrossRefGoogle Scholar
  6. Benito B, Lorite J, Peñas J (2011) Altitudinal patterns of key species in Mediterranean-alpine ecosystems. Clim Change 108:471–483CrossRefGoogle Scholar
  7. Blanca G, López MR, Lorite J, Matínez MJ, Molero J, Quintas S, Girela MR, Varo MA, Vidal S (2002) Flora amenazada y endémica de Sierra Nevada. Consejería de Medio Ambiente, Junta Andalucía, SevillaGoogle Scholar
  8. Boyd C, Brooks TM, Butchart SHM, Edgar GJ, da Fonseca GAB, Hawkins F, Hoffmann M, Sechrest W, Stuart SN, van Dijk PP (2008) Spatial scale and the conservation of threatened species. Conserv Lett 1:37–43CrossRefGoogle Scholar
  9. Chown SL, Gaston KJ (2008) Macrophysiology for a changing world. Proc R Soc B 275:1469–1478PubMedCentralPubMedCrossRefGoogle Scholar
  10. Cox CB, Moore PD (2010) Biogeography: an ecological and evolutionary approach. Wiley, HobokenGoogle Scholar
  11. Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, SuderlandGoogle Scholar
  12. Cozzolino S, Nardella AM, Impagliazzo S, Widmer A, Lexer C (2006) Hybridization and conservation of Mediterranean orchids: should we protect the orchid hybrids or the orchid hybrid zones? Biol Conserv 129:14–23CrossRefGoogle Scholar
  13. Crispo E, Moore JS, Lee-Yaw JA, Gray SM, Haller BC (2011) Broken barriers: human-induced changes to gene flow and introgression in animals. BioEssays 33:508–518PubMedCrossRefGoogle Scholar
  14. Dirnböck T, Essl F, Rabitsch W (2011) Disproportional risk for habitat loss of high-altitude endemic species under climate change. Glob Change Biol 17:990–996CrossRefGoogle Scholar
  15. Dullinger S, Gattringer A, Thuiller W, Moser D et al (2012) Extinction debt of high-mountain plants under twenty-first-century climate change. Nat Clim Change 2:619–622CrossRefGoogle Scholar
  16. Eckert CG, Samis E, Loughreed SC (2008) Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol Ecol 17:1170–1188PubMedCrossRefGoogle Scholar
  17. Ellstrand NC, Elam DR (1993) Population genetics consequences of small population size: implications for plant conservation. Annu Rev Ecol Syst 24:217–242CrossRefGoogle Scholar
  18. Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci USA 97:7043–7050PubMedCentralPubMedCrossRefGoogle Scholar
  19. Ellstrand NC, Meirmans P, Rong J, Bartsch D, Ghosh A, de Jong TJ, Haccou P, Lu BR, Snow AA, JrN Stewart, Strasburg JL, van Tienderen PH, Vrieling K, Hooftman D (2013) Introgression of crop alleles into wild or weedy populations. Annu Rev Ecol Evol Syst 44:325–345CrossRefGoogle Scholar
  20. Engler R, Randin C, Thuiller W, Dullinger S, Zimmermann A, Araújo MB, Pearman PB, Le Lay G, Piédallu C, Albert CH, Choler P, Coldea G, De Lamo X, Dirnböck T, Gégout JC, Gómez-García D, Grytnes JA, Heegaard E, Hoistad F, Nogués-Bravo D, Normand S, Pusças M, Sebastià MT, Stanisci A, Theurillat JP, Trivedi MR, Vittoz P, Guisan A (2011) 21st century climate change threatens mountain flora unequally across Europe. Glob Change Biol 17:2330–2341CrossRefGoogle Scholar
  21. Fitzpatrick MC, Gove AD, Sanders NJ, Dunn RR (2008) Climate change plant migration and range collapse in a global biodiversity hotspot, the Banksia (Proteaceae) of Western Australia. Glob Change Biol 14:1337–1352CrossRefGoogle Scholar
  22. Franks SJ, Hoffmann AA (2012) Genetic of climate change adaptation. Ann Rev Genet 46:185–208PubMedCrossRefGoogle Scholar
  23. Garroway CJ, Bowman J, Cascaden TJ, Holloway GL, Mahan CG, Malcolm JR, Steele MA, Turner G, Wilson PJ (2010) Climate change induced hybridization in flying squirrels. Glob Change Biol 16:113–121CrossRefGoogle Scholar
  24. Gérard PR, Klein EK, Austerlitz F, Fernández-Manjarrés JF, Frascaria-Lacoste N (2006) Assortative mating and differential male mating success in an ash hybrid zone population. BMC Evol Biol 6:96PubMedCentralPubMedCrossRefGoogle Scholar
  25. González-Megías A, Menéndez R, Roy D, Brerenton T, Thomas C (2008) Changes in the composition of British butterfly assemblages over two decades. Glob Change Biol 14:1464–1474CrossRefGoogle Scholar
  26. Grabherr G, Gottfried M, Pauli H (1994) Climate effects on mountain plants. Nature 369:448PubMedCrossRefGoogle Scholar
  27. Gutiérrez-Larena B, Fuertes-Aguilar J, Nieto-Feliner G (2002) Glacial-induced altitudinal migrations in Armeria (Plumbaginaceae) inferred from patterns of chloroplast DNA haplotype sharing. Mol Ecol 11:1965–1974PubMedCrossRefGoogle Scholar
  28. Hails RS, Morley K (2005) Genes invading new populations: a risk assessment perspective. Trends Ecol Evol 20:245–252PubMedCrossRefGoogle Scholar
  29. Hengstum TH, Lachmuth S, den Oostermeijer JGB, Nijs HCM, Meirmans PG, van Tienderen PH (2012) Human-induced hybridization among congeneric endemic plants on Tenerife, Canary Islands. Plant Syst Evol 298:1119–1131CrossRefGoogle Scholar
  30. Hódar JA, Castro J, Zamora R (2003) Pine processionary caterpillar Thaumetopoea pityocampa as a new threat for relict Mediterranean Scots pine forests under climatic warming. Biol Conserv 110:123–129CrossRefGoogle Scholar
  31. IPCC (2007) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  32. Jump AS, Mátyás C, Peñuelas J (2009) The altitude-for-latitude disparity in the range retractions of woody species. Trends Ecol Evol 24:694–701PubMedCrossRefGoogle Scholar
  33. Kropf M, Comes HP, Kadereit JW (2006) Long-distance dispersal vs vicariance: the origin and genetic diversity of alpine plants in the Spanish Sierra Nevada. New Phytol 172:169–184PubMedCrossRefGoogle Scholar
  34. Kullman L (2002) Rapid recent range-margin rise of tree and shurb species in the Swedish Scandes. J Ecol 90:68–77CrossRefGoogle Scholar
  35. La Sorte FA, Jetz W (2010) Tracking of climatic niche boundaries under recent climate change. J Anim Ecol 81:914–925CrossRefGoogle Scholar
  36. Lazarus ED, McGill BJ (2014) Pushing the pace of tree species migration. PLoS One 9(8):e105380. doi:10.1371/journal.pone.0105380 PubMedCentralPubMedCrossRefGoogle Scholar
  37. Lenoir J, Gégout JC, Marquet PA, de Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th Century. Science 320:1768–1771PubMedCrossRefGoogle Scholar
  38. Levin DA, Francisco-Ortega J, Jansen RK (1996) Hybridization and the extinction of rare plant species. Conserv Biol 10:10–16CrossRefGoogle Scholar
  39. López-Pujol J, Harcía-Jacas N, Susanna A, Vilatersana R (2012) Should we conserve pure species or hybrid species? Delimiting hybridization and introgression in the Iberian endemic Centaurea podospermifolia. Biol Conserv 152:271–279CrossRefGoogle Scholar
  40. Mallet J (2007) Hybrid speciation. Nature 446:279–283PubMedCrossRefGoogle Scholar
  41. McClanahan TR, Cinner JE, Maina J, Graham NAJ, Daw TM, Stead SM, Wamukota A, Brown K, Ateweberhan M, Venus V, Polunin NVC (2008) Conservation action in a changing climate. Conserv Lett 1:53–59CrossRefGoogle Scholar
  42. Morgan JAT, Welch DJ, Harry AV, Street R, Broderick D, Ovenden JR (2011) A mitochondrial species identification assay for Australian blacktip sharks (Carcharhinus tilstoni, C. limbatus and C. amblyrhynchoides) using real-time PCR and high-resolution melt analysis. Mol Ecol 11:813–819CrossRefGoogle Scholar
  43. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 40:853–858CrossRefGoogle Scholar
  44. Nogués-Bravo D, Araújo MB, Errea MP, Martínez-Rica JP (2007) Exposure of global mountain systems to climate warming during the 21st century. Global Environ Change 17:420–428CrossRefGoogle Scholar
  45. Pauchard A, Kueffer C, Dietz H, Daehler C, Alexander J (2009) Ain’t no mountain high enough: plant invasions reaching new elevations. Front Ecol Environ 7:479–486CrossRefGoogle Scholar
  46. Pauli H, Gottfried M, Dullinger S, Grabherr G (2003) Assessing the long-term dynamics of endemic plants at summit habitats. Alpine biodiversity in Europe. In: Nagy L, Grabherr G, Körner C, Thompson DBA (eds) Ecological studies. Springer, Heidelberg, pp 195–207Google Scholar
  47. Pauli H, Gottfried M, Dullinger S, Abdaladze O, Akhalkatsi M, Benito JL, Coldea G, Dick J, Erschbamer B, Fernández MR, Goshn D, Holten JI, Kanka R, Kazakis G, Kollár J, Larsson P, Moiseev P, Moiseev D, Molau U, Molero-Mesa J, Nagy L, Pelino G, Puscas M, Rossi G, Stanisci A, Syverhuset AO, Theurillat JP, Tomasell M, Unterluggauer P, Villar L, Vittoz P, Grabherr G (2012) Recent plant diversity changes on Europe’s Mountain summits. Science 336:353–355PubMedCrossRefGoogle Scholar
  48. Peñuelas J, Boada M (2003) A global change-induced biome shift in the Montseny mountains (NE Spain). Glob Change Biol 9:131–140CrossRefGoogle Scholar
  49. Rhymer J, Simberloff D (1996) Extinction by hybridization and introgression. Annu Rev Ecol Syst 27:83–109CrossRefGoogle Scholar
  50. Rieseberg LH, Wendel JF (1993) Introgression and its consequences in plants. In: Harrison RG (ed) Hybrid zones and the evolutionary process. Oxford University Press, Oxford, pp 70–109Google Scholar
  51. Roux PC, Virtanen R, Heikkinen RK, Luoto M (2012) Biotic interactions affect the elevational ranges of high-latitude plant species. Ecography 35:1048–1056CrossRefGoogle Scholar
  52. Scriber JM (2011) Impact of climate warming on hybrid zone movement: geographically diffuse and biologically porous “species borders”. Insect Sci 18:121–159CrossRefGoogle Scholar
  53. Seehausen O (2006) Conservation: losing biodiversity by reverse speciation. Curr Biol 16:334–337CrossRefGoogle Scholar
  54. Soltis PS, Soltis DE (2009) The role of hybridization in plant speciation. Annu Rev Plant Biol 60:561–588PubMedCrossRefGoogle Scholar
  55. Tauer CG, Stewart JF, Will RE (2012) Hybridization leads to loss of genetic integrity in shortleaf pine: unexpected consequences of pine management and fire suppression. J For 110(4):216–224Google Scholar
  56. Theurillat JP, Guisan A (2001) Potential impact of climate change on vegetation in the European Alps: a review. Clim Change 50:77–109CrossRefGoogle Scholar
  57. Thomas CD, Franc AM, Hill JK (2006) Range retractions and extinction in the face of climate warming. Trends Ecol Evol 2:415–416CrossRefGoogle Scholar
  58. Thompson JD, Gaudeul M, Debussche M (2009) Conservation value of sites of hybridization in peripheral populations of rare plant species. Conserv Biol 24:236–245PubMedCrossRefGoogle Scholar
  59. Thuiller W, Albert C, Araújo MB et al (2008) Predicting global change impacts on plant species’ distributions, Future challenges. Persp Plant Ecol Evol Syst 9:137–152CrossRefGoogle Scholar
  60. Valente LM, Savolainen V, Vargas P (2010) Unparalleled rates of species diversification in Europe. Proc R Soc Lond B 277:1489–1496CrossRefGoogle Scholar
  61. Vegas-Vilarrúbia T, Nogué S, Rull V (2012) Global warming, habitat shifts and potential refugia for biodiversity conservation in the neotropical Guayana Highlands. Biol Cons 152:159–168CrossRefGoogle Scholar
  62. Vilà M, Weber E, D’Antonio CM (2000) Conservation implications of invasion by plant hybridization. Biol Invasions 2:207–217CrossRefGoogle Scholar
  63. Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TBC (2002) Ecological responses to recent climate change. Nature 416:389–395PubMedCrossRefGoogle Scholar
  64. Wardle P, Coleman MC (1992) Evidence of rising upper limits of four native New Zealand forest trees. N Z J Bot 30:303–314CrossRefGoogle Scholar
  65. Whitney KD, Ahern JR, Campbell LG, Albert LP, King MS (2010) Pattern of hybridization in plants. Perspect Plant Ecol 12:175–182CrossRefGoogle Scholar
  66. Wolf DE, Takebayashi N, Rieseberg LH (2001) Predicting the risk of extinction through hybridization. Conserv Biol 15:1039–1053CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • José M. Gómez
    • 1
    • 2
  • Adela González-Megías
    • 3
  • Juan Lorite
    • 4
  • Mohamed Abdelaziz
    • 5
    • 6
  • Francisco Perfectti
    • 6
  1. 1.Departamento de Ecología Funcional y EvolutivaEstación Experimental de Zonas Aridas (EEZA-CSIC)AlmeríaSpain
  2. 2.Departamento de EcologíaUniversidad de GranadaGranadaSpain
  3. 3.Departamento de ZoologíaUniversidad de GranadaGranadaSpain
  4. 4.Departamento de BotánicaUniversidad de GranadaGranadaSpain
  5. 5.Biological and Environmental Sciences, School of Natural SciencesUniversity of StirlingStirlingUK
  6. 6.Departamento de GenéticaUniversidad de GranadaGranadaSpain

Personalised recommendations