Biodiversity and Conservation

, Volume 24, Issue 4, pp 841–863 | Cite as

Microstructure and cyanobacterial composition of microbial mats from the High Arctic

  • Asunción de los RíosEmail author
  • Carmen Ascaso
  • Jacek Wierzchos
  • Warwick F. Vincent
  • Antonio Quesada
Original Paper


Arctic lakes, ponds and streams contain benthic microbial mats that are dominated by cyanobacteria, and these communities often account for a large proportion of the total ecosystem biomass and productivity. The vertical structure and composition of mats from two different aquatic habitats in the Canadian High Arctic, Ward Hunt Lake and a polar desert stream were analyzed in detail by microscopy techniques. Two distinct layers were identified in each mat: a surface layer with a high density of cells and associated extracellular polymeric substances (EPS), and a less cohesive bottom layer with an accumulation of mineral particles. The matrix formed by the cyanobacterial filaments and EPS produced the complex microstructure of all three mats, and likely favoured different microenvironments where specialized microbial interactions and biomineralization processes could take place. Structural and compositional differences were found among the mats. The lake mat had a surface layer of Dichothrix, and contained abundant particles of calcium carbonate, while Tychonema-like and Tolypothrix-like appeared mainly in the stream mats, along with a higher diversity of Chroococcales. A black microbial mat from one of the stream sites had markedly lower diversity than the other mat types. The observed differences in cyanobacterial composition and physical structure may be related to habitat stability and the availability of liquid water.


Cyanobacteria Habitat stability Microbial ecology Polar regions Water availability 



We are grateful to PCPS for the logistic support to the High Arctic and Parks Canada for access to their facilities in Quttinirpaaq National Park. This project was funded by the Grants REN2000-0435, CGL2005-06549, POL2006-06635 and CTM2011-28736 from Spanish Ministry of Economy and Competitiveness, with funding of the microscopy studies through grants CTM2012-38222-C02-02 and CGL2013-42509. Additional support was provided by the Natural Sciences and Engineering Research Council of Canada and the Canada Research Chair program. The authors would like to thank to ICA and the MNCN (CSIC) microscopy services staff for technical assistance.


  1. Bonilla S, Villeneuve V, Vincent WF (2005) Benthic and planktonic algal communities in a high arctic lake: pigment structure and contrasting responses to nutrient enrichment. J Phycol 41:1120–1130CrossRefGoogle Scholar
  2. Bontognali TRR, Vasconcelos C, Warthmann RJ, Bernasconi SM, Dupraz C, Strohmenger CJ, McKenzie J (2010) Dolomite formation within microbial mats in the coastal sabkha of Abu Dhabi (United Arab Emirates). Sedimentology 57:824–844CrossRefGoogle Scholar
  3. Braissant O, Decho AW, Dupraz C, Glunk C, Przekop KM, Visscher PT (2007) Exopolymeric substances of sulfate-reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology 5:401–411CrossRefGoogle Scholar
  4. Braissant O, Decho AW, Prezekop KM, Gallagher K, Glunk C, Dupraz C, Visscher P (2009) Characteristics and turnover of exopolymeric substances in a hypersaline microbial mat. FEMS Microbiol Ecol 67:293–307CrossRefPubMedGoogle Scholar
  5. Chan C (2004) Microbial polysaccharides template assembly of nanocrystal fibers. Science 303:1656–1658CrossRefPubMedGoogle Scholar
  6. Comte K, Sabacka M, Carre-Mlouka A, Elster J, Komarek J (2007) Relationships between the Arctic and Antarctic cyanobacteria: three Phormidium-like strains evaluated by a polyphasic approach. FEMS Microbiol Ecol 59:366–376CrossRefPubMedGoogle Scholar
  7. De los Ríos A, Ascaso C, Wierzchos J, Fernandez-Valiente E, Quesada A (2004) Microstructural characterization of cyanobacterial mats from the McMurdo Ice Shelf, Antarctica. Appl Environ Microbiol 70:569–580CrossRefPubMedCentralPubMedGoogle Scholar
  8. De los Ríos A, Cary C, Cowan D (2014a) The spatial structures of hypolithic communities in the Dry Valleys of East Antarctica. Polar Biol 37:1823–1833CrossRefGoogle Scholar
  9. De los Ríos A, Wierzchos J, Ascaso C (2014b) The lithic microbial ecosystems of Antarctica’s McMurdo dry valleys. Antarct Sci 26:459–477CrossRefGoogle Scholar
  10. De Maayer P, Anderson D, Cary C, Cowan DA (2014) Some like it cold: understanding the survival strategies of psychrophiles. EMBO Rep 15:508–517CrossRefPubMedGoogle Scholar
  11. Decho AW (2000) Exopolymer microdomains as a structuring agent for heterogeneity within microbial biofilms. In: Riding RE, Awramik SM (eds) Exopolymer microdomains as a structuring agent for heterogeneity within microbial biofilms. Springer, Berlin, pp 9–15Google Scholar
  12. Dupraz C, Visscher PT, Baumgartner LK, Reid RP (2004) Microbe-mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas). Sedimentology 51:745–765CrossRefGoogle Scholar
  13. Dupraz C, Reid R, Braissant O, Decho AW, Norman RS, Visscher P (2009) Processes of carbonate precipitation in modern microbial mats. Earth Sci Rev 96:141–162CrossRefGoogle Scholar
  14. Fernández-Valiente E, Camacho A, Rochera C, Rico E, Vincent WF, Quesada A (2007) Community structure and physiological characterization of microbial mats in Byers Peninsula, Livingston Island (South Shetland Islands, Antarctica). FEMS Microbiol Ecol 59:377–385CrossRefPubMedGoogle Scholar
  15. Glunk C, Dupraz C, Braissant O, Gallagher K, Verrecchia E, Visscher P (2011) Microbially mediated carbonate precipitation in a hypersaline lake, Big Pond (Eleuthera, Bahamas). Sedimentology 58:720–738CrossRefGoogle Scholar
  16. Hawes I, Sumner D, Andersen D, Jungblut A, Mackey T (2013) Timescales of growth response of microbial mats to environmental change in an ice-covered Antarctic lake. Biology 2:151–176CrossRefPubMedCentralPubMedGoogle Scholar
  17. Jungblut AD, Hawes I, Mountfort D, Hitzfeld B, Dietrich DR, Burns BP, Neilan BA (2005) Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. Environ Microbiol 7:519–529CrossRefPubMedGoogle Scholar
  18. Jungblut AD, Lovejoy C, Vincent WF (2010) Global distribution of cyanobacterial ecotypes in the cold biosphere. ISME J 4:191–202CrossRefPubMedGoogle Scholar
  19. Komárek J, Anagnostidis K (1989) Modern approach to the classification system of Cyanophytes, 4–Nostocales. Arch Hydrobiol Suppl. 82/Algol Stud 56:247–345Google Scholar
  20. Komárek J, Anagnostidis, K. (1999) Cyanoprokaryota. 1. Chroococcales. In: Ettl H, Gärtner G, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa. Begründet von A. Pascher. Band 19/1. Spektrum, Akademischer Verlag, Heidelberg, pp 1–548Google Scholar
  21. Komárek J, Anagnostidis K (2005) Cyanoprokaryota. 2. Teil: Oscillatoriales. In: Büdel B, Gärdner G, Krienitz L, Schagerl M. (eds) Süsswasserflora von Mitteleuropa, vol. 19/2. Elsevier, MünchenGoogle Scholar
  22. Krembs C, Eicken H, Junge K, Deming JW (2002) High concentrations of exopolymeric substances in Arctic winter sea ice: implications for the polar ocean carbon cycle and cryoprotection of diatoms. Deep Sea Res Part I 49:2163–2181CrossRefGoogle Scholar
  23. Lionard M, Péquin B, Lovejoy C, Vincent WF (2012) Benthic cyanobacterial mats in the High Arctic: multi-layer structure and fluorescence responses to osmotic stress. Front Microbiol 3:140CrossRefPubMedCentralPubMedGoogle Scholar
  24. Loza V, Perona E, Carmona J, Mateo P (2013) Phenotypic and genotypic characteristics of Phormidium-like cyanobacteria inhabiting microbial mats are correlated with the trophic status of running water. Eur J Phycol 48:235–252CrossRefGoogle Scholar
  25. Nichols C, Guezennec J, Bowman J (2005) Bacterial exopolysaccharides from extreme marine environments with special consideration of the southern ocean, sea ice, and deep-sea hydrothermal vents: a review. Mar Biotechnol 7:253–271CrossRefPubMedGoogle Scholar
  26. Noffke N, Gerdes G, Klenke T (2003) Benthic cyanobacteria and their influence on the sedimentary dynamics of peritidal depositional systems (siliciclastic, evaporitic salty, and evaporitic carbonatic). Earth Sci Rev 62:163–176CrossRefGoogle Scholar
  27. Paerl HW, Pinckney JL (1996) A mini-review of microbial consortia: their roles in aquatic production and biogeochemical cycling. Microb Ecol 31:225–247CrossRefPubMedGoogle Scholar
  28. Peeters K, Verleyen E, Hodgson D, Convey P, Ertz D, Vyverman W, Willems A (2012) Heterotrophic bacterial diversity in aquatic microbial mat communities from Antarctica. Polar Biol 35:543–554CrossRefGoogle Scholar
  29. Petroff AP, Sim MS, Maslov A, Krupenin M, Rothman DH, Bosak T (2010) Biophysical basis for the geometry of conical stromatolites. Proc Nat Acad Sci 107:9956–9961CrossRefPubMedCentralPubMedGoogle Scholar
  30. Quesada A, Vincent WF (2012) Cyanobacteria in the cryosphere: snow, ice and extreme cold. In: Whitton BA (ed) Ecology of Cyanobacteria II. Springer, New York, pp 387–399Google Scholar
  31. Quesada A, Vincent WF, Lean DRS (1999) Community and pigment structure of arctic cyanobacterial assemblages: the occurrence and distribution of UV-absorbing compounds. FEMS Microb Ecol 28:315–323CrossRefGoogle Scholar
  32. Quesada A, Sanchez-Contreras M, Fernández-Valiente E (2001) Tolerance of Antarctic cyanobacterial microbial mats to natural UV radiation. Nova Hedwigia 123:275–290Google Scholar
  33. Singh SM, Elster J (2007) Cyanobacteria in Antarctic lake environments: a mini-review. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Dordrecht, pp 303–320CrossRefGoogle Scholar
  34. Taton A, Hoffmann L, Wilmotte A (2008) Cyanobacteria in microbial mats of Antarctic lakes (East Antarctica)—a microscopical approach. Algol Stud 126:173–208CrossRefGoogle Scholar
  35. Tolker-Nielsen T, Molin S (2000) Spatial organization of microbial biofilm communities. Microb Ecol 40:75–84PubMedGoogle Scholar
  36. Tytgat B, Verleyen E, Obbels D, Peeters K, De Wever A, D’hondt S, De Meyer T, Van Criekinge W, Vyverman W, Willems A (2014) Bacterial diversity assessment in Antarctic terrestrial and aquatic microbial mats: a comparison between bidirectional pyrosequencing and cultivation. PLoS One 9:e97564. doi: 10.91371/journal.pone.0097564 CrossRefPubMedCentralPubMedGoogle Scholar
  37. Van Hove P, Vincent WF, Galand PE, Wilmotte A (2008) Abundance and diversity of picocyanobacteria in high arctic lakes and fjords. Algo Stud 126:209–227CrossRefGoogle Scholar
  38. Varin T, Lovejoy C, Jungblut A, Vincent WF, Corbeil J (2010) Metagenomic profiling of Arctic microbial mat communities as nutrient scavenging and recycling systems. Limnol Oceanogr 55:1901–1911CrossRefGoogle Scholar
  39. Varin T, Lovejoy C, Jungblut A, Vincent WF, Corbeil J (2012) Metagenomic analysis of stress genes in microbial mat communities from Antarctica and the High Arctic. Appl Environ Microbiol 78:549–559CrossRefPubMedCentralPubMedGoogle Scholar
  40. Verleyen E, Sabbe K, Hodgson DA, Grubisic S, Taton A, Cousin S, Wilmotte A, De Wever A, Van Der Gucht K, Vyverman W (2010) Structuring effects of climate-related environmental factors on Antarctic microbial mat communities. Aquat Microb Ecol 59:11–24CrossRefGoogle Scholar
  41. Vézina S, Vincent WF (1997) Arctic cyanobacteria and limnological properties of their environment: Bylot Island, Nothwest Territories, Canada (73ºN, 80ºW). Polar Biol 17:523–534CrossRefGoogle Scholar
  42. Villeneuve V, Vincent WF, Komárek J (2001) Community structure and microhabitat characteristics of cyanobacterial mats in an extreme high Arctic environment: Ward Hunt Lake. Nova Hedwigia 123:199–224Google Scholar
  43. Vincent WF (1988) Microbial ecosystems of Antarctica. Cambridge University Press, CambridgeGoogle Scholar
  44. Vincent WF, Quesada A (2012) Cyanobacteria in high latitude lakes, rivers and seas. In: Whitton BA (ed) Ecology of Cyanobacteria II. Springer, New York, pp 371–385Google Scholar
  45. Vincent WF, Castenholz RW, Downes MT, Howard-Williams C (1993) Antarctic cyanobacteria: light, nutrients, and photosynthesis in the microbial mat environment. J Phycol 29:745–755CrossRefGoogle Scholar
  46. Vincent WF, Gibson JAE, Pienitz R, Villenueve V (2000) Ice shelf microbial ecosystems in the High Arctic and implications for life on snowball Earth. Naturwissenschaften 87:137–141CrossRefPubMedGoogle Scholar
  47. Vyverman W, Verleyen E, Wilmotte A, Hodgson D, Willems A, Peeters K, Van de Vijver B, De Wever A, Leliaert F, Sabbe K (2010) Evidence for widespread endemism among Antarctic micro-organisms. Polar Sci 4:103–113CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Asunción de los Ríos
    • 1
    Email author
  • Carmen Ascaso
    • 1
  • Jacek Wierzchos
    • 1
  • Warwick F. Vincent
    • 2
  • Antonio Quesada
    • 3
  1. 1.Museo Nacional de Ciencias Naturales, CSICMadridSpain
  2. 2.Centre d’études nordiques (CEN) & Dépt de BiologieUniversité LavalQuebec CityCanada
  3. 3.Dpt. BiologíaUniversidad Autónoma de MadridMadridSpain

Personalised recommendations