Biodiversity and Conservation

, Volume 24, Issue 4, pp 759–779 | Cite as

Diversity of cyanobacteria on rock surfaces

  • Tomáš HauerEmail author
  • Radka Mühlsteinová
  • Markéta Bohunická
  • Jan Kaštovský
  • Jan Mareš
Review Paper


Terrestrial cyanobacteria dwelling on rocks and stone walls represent an important but still understudied part of global biodiversity, despite their substantial importance to the environment. Microbial biofilms, including those formed by cyanobacteria, play an essential role in the succession on rock habitats as they possess a unique ability to gradually change the biotope. In this review, we have gathered 180 research publications reporting on occurrence of 762 species of terrestrial cyanobacteria on rock surfaces worldwide. Despite the long history of phycological research in general, Europe remains the most thoroughly explored region in the field of terrestrial phycology. A total of 401 taxa records from aerial epilithic habitats have been reported from this subcontinent. With regard to the lack of comparably comprehensive studies from different areas of the world, reliable comparisons of species richness among different geographical regions and climatic zones are not available at the moment. Heterocytous and coccoid cyanobacteria prevailed on the rocks and stones in terms of biomass, however, the species richness seemed to be distributed equally among coccoid (269 taxa), simple filamentous (275 taxa), and heterocytous (218 taxa) forms. As the heterogeneity of the available data shows, further thorough research on this often neglected group of organisms is desirable. To set a starting point for such an effort, this review summarizes the current state of knowledge on aerial epilithic cyanobacterial communities on both natural and anthropogenic stone surfaces around the world.


Biodeterioration Diversity Blue–green algae Caves Subaerophytic 



This research was supported by a long-term research development Project No. RVO 67985939 of the Institute of Botany CAS, and by the Grant GA CR 15-11912S. Keith Edwards corrected the language. Authors are grateful to all reviewers for their valuable comments leading to improvement of the manuscript.

Supplementary material

10531_2015_890_MOESM1_ESM.pdf (270 kb)
Supplementary material 1 (PDF 269 kb)


  1. Abdelahad N (1989) On four Myxosarcina-like species (Cyanophyta) living in the Inferniglio cave (Italy). Algol Stud 54:3–13Google Scholar
  2. Aboal M, Asencio AD, Prefasi M (1994) Studies on cave cyanophytes from southeastern Spain: Scytonema julianum. Algol Stud 74:31–36Google Scholar
  3. Adhikari SP, Kováčik L (2010) Comparative analysis of cyanobacteria and micro-algae in the biofilms on the exterior of stone monuments in Bratislava, Slovakia and Bhubaneswar, India. J Indian Bot Soc 89(1–2):19–23Google Scholar
  4. Albertano P (1993) Epilithic algal communities in hypogean environments. G Bot Ital 127:386–392Google Scholar
  5. Albertano P, Bruno L, D’Ottavi D, Moscone D, Palleschi G (2000) Effect of photosyntesis on pH variation in cyanobacterial biofilms from Roman catacombs. J Appl Phycol 12:379–384Google Scholar
  6. Anagnostidis K, Economou-Amilli A, Pantazidou A (1981) Studies in the microflora of the cave Perma, Ioannina, Greece. Bull Soc Speleol Greece 18:458–530Google Scholar
  7. Anagnostidis K, Economou-Amilli A, Roussomoustakaki M (1983) Epilithic and chasmolithic microflora (Cyanophyta, Bacillariophyta) from marbles of the Parthenon (Acropolis-Athens, Greece). Nova Hedwigia 38:227–287Google Scholar
  8. Asencio AD, Aboal M (1996) Cyanophytes from Andragulla abrigo (Murcia, SE Spain) and their environmental conditions. Algol Stud 83:55–72Google Scholar
  9. Asencio AD, Aboal M (2000) Algae from Serreta cave (Murcia, SE Spain) and their environmental conditions. Algol Stud 96:59–78Google Scholar
  10. Asencio AD, Aboal M (2011) In situ nitrogen fixation by cyanobacteria at the Andragulla cave, Spain. J Cave Karst Stud 73(2):50–54Google Scholar
  11. Aubrecht R, Brewer-Carías Ch, Šmída B, Audy M, Kováčik L (2008) Anatomy of biologically mediated opal speleothems in the World’s largest sandstone cave: Cueva Charles Brewer, Chimantá Plateau, Venezuela. Sediment Geol 203:181–195Google Scholar
  12. Barberousse H, Tell G, Yéprémian C, Couté A (2006) Diversity of algae and cyanobacteria growing on building facades in France. Arch Hydrobiol/Algol Stud 120:81–105Google Scholar
  13. Beck-Mannagetta G (1926) Algenfunde im Riesengebirge. Ein Beitrag zur Kenntnis der Algenflora des Riesengebirges. Věstník Král Čes Spol Nauk Tř II:1–18Google Scholar
  14. Beck-Mannagetta G (1929) Algenfunde im Riesengebirge. Ein zweiter Beitrag zur Kenntnis der Algenflora des Riesengebirges. Lotos 77:92–100Google Scholar
  15. Bellinzoni AM, Caneva G, Ricci S (2003) Ecological trends in travertine colonisation by pioneer algae and plant communities. Int Biodeterior Biodegr 51:203–210Google Scholar
  16. Bohunická M, Johansen JR, Fučíková K (2011) Tapinothrix clintonii sp. nov. (Pseudanabaenaceae, Cyanobacteria), a new species at the nexus of five genera. Fottea 11(1):127–140Google Scholar
  17. Broady P (1996) Diversity, distribution, and dispersal of Antarctic terrestrial algae. Biodivers Conserv 5:1307–1335Google Scholar
  18. Büdel B (1999) Ecology and diversity of rock-inhabiting cyanobacteria in tropical regions. Eur J Phycol 34:361–370Google Scholar
  19. Büdel B, Lüttge U, Stelzer R, Huber O, Medina E (1994) Cyanobacteria of rocks and soils of the Orinoco Lowlands and the Guayana Uplands, Venezuela. Bot Acta 107:422–431Google Scholar
  20. Büdel B, Becker U, Porembski S, Barthlott W (1997) Cyanobacteria and cyanobacterial lichens from Inselbergs of the Ivory Coast, Africa. Bot Acta 110:458–465Google Scholar
  21. Büdel B, Weber HM, Porembski S, Barthlott W (2002) Cyanobacteria of inselbergs in the Atlantic rainforest zone of eastern Brazil. Phycologia 41:498–506Google Scholar
  22. Camburn KE (1983) Subaerial algae from eastern Kentucky. Castanea 48(2):83–88Google Scholar
  23. Casamatta DA, Verb RG, Beaver JR, Vis ML (2002) An investigation of the cryptobiotic community from sandstone cliffs in Southeast Ohio. Int J Plant Sci 163(5):837–845Google Scholar
  24. Casamatta DA, Gomez SR, Johansen JR (2006) Rexia erecta gen. et sp. nov. and Capsosira lowei sp. nov., two newly described cyanobacterial taxa from the Great Smoky Mountains National Park (USA). Hydrobiologia 561:13–26Google Scholar
  25. Cassar L (2004) Photocatalysis of cementitious materials: clean buildings and clean air. MRS Bull 29:328–331Google Scholar
  26. Chang TP, Chang-Schneider H (1994) Algen in vier suddeutschen Hohlen. Ber Bayer Bot Ges 62:221–229Google Scholar
  27. Claus G (1962) Data on the ecology of the algae of the Peace Cave in Hungary. Nova Hedwigia 4:55–80Google Scholar
  28. Couté A (1985) Preliminary comparative study of two calcareous cyanophytes from caves: Geitleria calcarea Friedmann and Scytonema julianum Meneghin. Arch Hydrobiol 71:91–98Google Scholar
  29. Couté A, Tell G, Thérézien Y (1999) Cyanophyceae (Cyanobacteria) aérophiles de Nouvelle-Calédonie. Cryptogam Algol 20:30–144Google Scholar
  30. Crispim CA, Gaylarde CC (2004) Cyanobacteria and biodeterioration of cultural heritage: a review. Microb Ecol 49:1–10PubMedGoogle Scholar
  31. Czerwik–Marcinkowska J, Mrozinska T (2011) Algae and cyanobacteria in Caves of the Polish Jura. Pol Bot J 56(2):203–243Google Scholar
  32. Danin A, Caneva G (1990) Deterioration of limestone walls in Jerusalem and marble monuments in Rome caused by cyanobacteria and cyanophilous lichens. Int Biodeterior 26:397–417Google Scholar
  33. Darby BJ, Neher DA (2012) Stable isotope composition of microfauna supports the occurrence of biologically fixed nitrogen from cyanobacteria in desert soil food webs. J Arid Environ 85:76–78Google Scholar
  34. Darienko T, Hoffmann L (2003) Algal growth on cultural monuments in Ukraine. Biologia, Bratislava 58(4):575–587Google Scholar
  35. Dayner DM, Johansen JR (1991) Observations on the algal flora of Seneca Cavern, Seneca County, Ohio. Ohio J Sci 91:118–121Google Scholar
  36. de los Ríos A, Wierzchos J, Sancho LG, Ascaso C (2004) Exploring the physiological state of continental Antarctic endolithic microorganisms by microscopy. FEMS Microbiol Ecol 50:143–152Google Scholar
  37. de los Ríos A, Grube M, Sancho LG, Ascaso C (2007) Ultrastructural and genetic characterization of endolithic cyanobacterial biofilms colonizing Antarctic granite rocks. FEMS Microbiol Ecol 59:386–395Google Scholar
  38. De Miguel JMG, Sanchez-Castilo L, Ortega-Calvo JJ, Gil JA, Saiz-Jimenez C (1995) Deterioration of building material from great Jaguar Pyramid at Tikal, Guatemala. Build Environ 30(4):591–598Google Scholar
  39. De Wildeman E (1900) Les algues de la flore de Buitenzorg (Essai d’une flore algologique de Java). E. G. Brill, LeidenGoogle Scholar
  40. Dickie G (1881) Notes on the algae from the Amazonas and its tributaries. Bot J Linn Soc 18:123–132Google Scholar
  41. Diels L (1914) Die Algen-Vegetation der Südtiroler Dolomitriffe. Ein Beitrag zur Ökologie der Lithophyten. Ber Dtsch Bot Ges 32:502–526Google Scholar
  42. Dillon JG, Tatsumi CM, Tandingan PG, Castenholz RW (2002) Effect of environmental factors on the synyhesis of scytonemin, a UV-screening pigment, in cyanobacterium (Chroococcidiopsis sp.). Arch Microbiol 177:322–331PubMedGoogle Scholar
  43. Dobat K (1970) Considérations sur la végétation cryptogamique des grottes du Jura Souabe (sud-ouest de l’Allemagne). Ann Spéléol 25(4):872–907Google Scholar
  44. Dobat K (1972) Ein Ökosystem in Aufbau: Die “Lampenflora Schauhöhlen”. Umsch Wiss Tech 72(15):493–494Google Scholar
  45. Dobat K (1977) Zur Ökogenese und Ökologie der Lampenflora deutscher Schauhohlen. Gustav Fischer Verlag, StuttgartGoogle Scholar
  46. Dobat K (1998) Flore de la lumiére artificiélle (lampen-flora-maladie verte). In: Juberthie C, Decu V (eds) Encyclopaedia biospeleologica, Tome 2. Société de Biospéologie, Moulis-BucaresGoogle Scholar
  47. Dojani S, Lakatos M, Rascher U, Wanek W, Lüttge U, Büdel B (2007) Nitrogen input by cyanobacterial biofilms of an inselberg into a tropical rainforest in French Guiana. Flora 202:521–529Google Scholar
  48. Dor I, Dor Y (1999) Cyanobacterial flora of the Soreq stalactite Cave (Israel) and way of its control. Algol Stud 94:115–120Google Scholar
  49. Drouet FA (1942) The filamentous Myxophyceae of Jamaica. Bot Ser Field Museum Nat Hist 20:107–122Google Scholar
  50. Drouet FA (1957) Contributions to the flora of Venezuela. Algae. Fieldiana 28:681–688Google Scholar
  51. Drouet FA (1967) Flora del Auyan-tepui. Algae. Acta Bot Venez 2:70–72Google Scholar
  52. Ehling-Schulz M, Scherer S (1999) UV protection in cyanobacteria. Eur J Phycol 34:329–338Google Scholar
  53. Faimon J, Štelcl J, Kubešová S, Zima J (2003) Environmentally acceptable effect of hydrogen peroxide on cave ‘‘lamp-flora’’, calcite speleothems and limestones. Environ Poll 122:417–422Google Scholar
  54. Ferreira V, Branco LHZ, Kaštovský J (2013) True branched nostocalean cyanobacteria from tropical aerophytic habitats and molecular assessment of two species from field samples. Rev Biol Trop 61:455–466PubMedGoogle Scholar
  55. Frémy P (1924) Contribuition à la flore algologique de l’Afrique équatoriale française. Rev Algol 1:1–23Google Scholar
  56. Frémy P (1925) Essai sur l’écologie des algues saxicoles, aériennes et subaériennes, en Normandie. Nuova Notarisia 36:297–304Google Scholar
  57. Frémy P (1929) Les Myxophycées de l’Afrique équatoriale française. Arch Bot 3:1–508Google Scholar
  58. Frémy P (1930) Les Myxophycées de Madagascar. Ann Cryptogam Exot 3:200–230Google Scholar
  59. Frémy P (1932) Cyanophycées de la Nouvelle-Guinée. Ann Cryptogam Exot 5:190–197Google Scholar
  60. Friedmann I (1961) Chroococcidiopsis kashaii sp. nov. and the genus Chroococcidiopsis (Study of cave algae of Izrael IV). Osterr Bot Zetschrift 108:354–367Google Scholar
  61. Friedmann I (1962) Ecology of atmophytic-nitrate alga Chroococcidiopsis kashaii. Arch Microbiol 42:42–45Google Scholar
  62. Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215(4536):1045–1053PubMedGoogle Scholar
  63. Friedmann EI, Ocampo R (1972) Endolithic blue–green algae in the dry valleys: primary producers in the Antarctic desert ecosystem. Science 193(4259):1247–1249Google Scholar
  64. Fritsch FE (1907) A general consideration of the subaerial and fresh-water algal flora of Ceylon. A contribution to the study of tropical algal ecology. Part I. -subaerial algae and algae of the Inland fresh-waters. P Roy Soc Lond B Bio 79:197–254Google Scholar
  65. Furey PC, Lowe RL, Johansen JR (2007) Wet wall algal community response to in-field nutrient manipulation in the Great Smoky Mountains National Park, USA. Algol Stud 125:17–43Google Scholar
  66. Garbacki N, Ector L, Kostikov I, Hoffmann L (1999) Contribution a l’etude de la fl ore des grottes de Belgique. Belg J Bot 132:43–76Google Scholar
  67. Garcia-Pichel F, Castenholz RW (1993) Occurrence of UV-absorbing mycosporine-like compounds among cyanobacterial isolates and an estimate of their sreening capacity. Appl Environ Microbiol 59:163–169PubMedCentralPubMedGoogle Scholar
  68. Garcia-Vallés M, Vendrell-Saz M, Molera J, Blazquez F (1998) Interaction of rock and atmosphere: patinas on Mediterranean monuments. Environ Geol 36(1–2):137–149Google Scholar
  69. Gardner NL (1927) New Myxophyceae from Porto Rico. Mem the N Y Bot Gard 7:1–144Google Scholar
  70. Garthy J (1992) The postfire recovery of rock-inhabiting algae, microfungi and lichens. Can J Botany 70(2):301–312Google Scholar
  71. Gaylarde CC, Gaylarde PM (2005) A comparative study of the major microbial biomass of biofilms on exteriors of buildings in Latin America. Int Biodeterior Biodegr 55(2):131–139Google Scholar
  72. Geitler L (1933) Diagnosen neuer Blaualgen von den Sunda-Inseln. Arch Hydrobiol 12:622–634Google Scholar
  73. Golubić S (1967a) Algenvegetation der Felsen. In: Elster HJ, Ohle W (eds) Die Binnengewässer. Schweizerbart’sche Verlagsbuchhandlung, StuttgartGoogle Scholar
  74. Golubić S (1967b) Die Algenvegetation an Sandsteinfelsen Ost-Venezuelas (Cumaná). Int Revue gesamten Hydrobiol Hydrogr 52:693–699Google Scholar
  75. Golubić S, Friedmann EI, Schneider J (1981) The lithobiontic niche, with special reference to microorganisms. J Sediment Petrol 51:475–478Google Scholar
  76. Gomez SR, Johansen JR, Lowe RL (2003) Epilithic aerial algae of Great Smoky Mountains National Park. Biologia 58(4):603–615Google Scholar
  77. Goméz-Alarcón G, Muñoz M, Ariño X, Ortega-Calvo JJ (1995) Microbial communities in weathered sandstone: the case of Carrascosa del Campo church, Spain. Sci Total Environ 167:249–254Google Scholar
  78. Gomont M (1901) Myxophyceae hormogoneae in Johs. Schmidt. Flora of Koh Chang IV 24:202–211Google Scholar
  79. Gorbushina AA (2007) Life on the Rocks (Mini-Review). Environ Microbiol 9:1613–1631PubMedGoogle Scholar
  80. Hambler DJ (1964) The vegetation of granitic outcrops in western Nigeria. J Ecol 52:573–594Google Scholar
  81. Hariot MP (1913) Quelques cryptogames du Sahara et des régions voisines. Bull Muséum d’histoire Nat 1:113–115Google Scholar
  82. Hauer T (2007) Rock-inhabiting cyanoprokaryota from South Bohemia (Czech Republic). Nova Hedwigia 85(3–4):379–392Google Scholar
  83. Hauer T (2008) Epilithic cyanobacterial flora of Mohelenská hadcová steppe Nature Reserve (western Moravia, Czech Republic) 70 years ago and now. Fottea 8(2):129–132Google Scholar
  84. Hauer T (2010) Phototrophic biofilms on the interior walls of concrete Iterson-type cooling towers. J Appl Phycol 22:733–736Google Scholar
  85. Hauer T, Bohunická M, Johansen JR, Mareš J, Berrendero-Gomez E (2014) Reassessment of the cyanobacterial family Microchaetaceae and establishment of new families Tolypothrichaceae and Godleyaceae. J Phycol 50:1089–1100Google Scholar
  86. Häyrén E (1940) Die Algenvegetation der Sickerwasserstreifen auf den Felsen in Sudfinnland. Soc Sci Fenn Comment Biol 7:1–19Google Scholar
  87. Hernández-Mariné M, Asencio A, Canals A, Ariño X, Aboal M, Hoffmann L (1999) Discovery of populations of the lime-incrusting genus Loriella (Stigonematales) in Spanish caves. Algol Stud 94:122–137Google Scholar
  88. Hindák F, Wolowski K, Hindáková A (2011) The epilithon of a cooling tower of the power plant at Belchatow. Poland. Oceanol Hydrobiol Stud 40(4):38–43Google Scholar
  89. Hirsch P, Eckhardt FEW, Palmer RJ Jr (1995) Methods for the study of rock-inhabiting microorganisms—A mini-review. J Microbiol Methods 23:143–167Google Scholar
  90. Hoffmann L (1986) Cyanophycées aériennes et subaériennes du Grand-Duché de Luxembourg. Bull Jardin Bot Nat Belg 56(1–2):77–125Google Scholar
  91. Hoffmann L (1991) Terrestrial Cyanophyceae of Papua New Guinea. 1. The genus Stigonema. Arch Hydrobiol Suppl 92:333–348Google Scholar
  92. Hoffmann L (2002) Caves and other low-light environments: aerophytic photoautotrophic microorganisms. In: Bitton G (ed) Encyclopedia of environmental microbiology. Wiley, New YorkGoogle Scholar
  93. Hoffmann L, Darienko T (2005) Algal biodiversity on sandstone in Luxembourg. Ferrantia 44:99–101Google Scholar
  94. Hoffmann L, Gugger M, Asencio A (2003) Morphological and molecular characterisation of a stigonematalean cyanobacterium isolated from Spanish cave. Algol Stud 109:259–265Google Scholar
  95. Iliopoulou-Georgoudaki J, Pantazidou A, Theoulakis P (1993) An Assessment of cleaning photoautotrophic microflora: the case of Perama cave, Ioannina Greece. Mem Biospeleol 20:117–120Google Scholar
  96. Jaag O (1945) Untersuchungen über die Vegetation und Biologie der Algen des nackten Gesteins in den Alpen, im Jura und im schweizerischen Mittelland. In: Jaag O (ed) Beiträge zur Kryptogamenflora der Schweiz IX, Heft 3. Kommisionsverlag Buchdruckerei Büchler & Co., BernGoogle Scholar
  97. Johansen JR (1999) Diatoms of aerial habitats. In: Stoermer EF, Smol JP (eds) The diatoms: applications for the environmental and earth sciences. Cambridge University Press, Cambridge, pp 264–273Google Scholar
  98. Johansen JR, Rushforth SR, Brotherson JD (1983a) The algal flora of Navajo National Monument, Arizona, U.S.A. Nova Hedwigia 38:501–553Google Scholar
  99. Johansen JR, Rushforth SR, Orbendorfer R, Fungladda N, Grimes JA (1983b) The algal flora of selected wet walls in Zion National Park, Utah, USA. Nova Hedwigia 38:765–808Google Scholar
  100. Johansen JR, Lowe RL, Carty S, Fučíková K, Olsen CE, Fitzpatrick MH, Ress JA, Furey PC (2007) New algal species records for Great Smoky Mountains National Park with an annotated checklist of all reported algal taxa for the park. Southeast Nat 6(1):99–134Google Scholar
  101. Johansen JR, Olsen CE, Lowe RL, Fučíková K, Casamatta DA (2008) Leptolyngbya species from selected seep walls in the Great Smoky Mountains National Park. Algol Stud 126:21–36Google Scholar
  102. Kaštovský J (1997) Řasy v Mladečských a Javoříčských jeskyních. Živa 3(97):101–102Google Scholar
  103. Kaštovský J, Fučíková K, Hauer T, Bohunická M (2011) Microvegetation on the top of Mt. Roraima, Venezuela. Fottea 11:171–186Google Scholar
  104. Keshari N, Adhikary SP (2014) Diversity of cyanobacteria on stone monuments and building facades of India and their phylogenetic analysis. Int Biodeterior Biodegr 90:45–91Google Scholar
  105. Kol E (1966) Algal Vagrowth experiments in the Baradla Cave at Aggletek. Int J Speleol 2:457–474Google Scholar
  106. Komárek J (1999) Diversity of cyanoprokaryotes (cyanobacteria) of King George Island, maritime Antarctica—a survey. Algol Stud 94:181–193Google Scholar
  107. Komárek J, Elster J (2008) Ecological background of cyanobacterial assemblages of the northern part of James Ross Island, Antarctica. Pol Polar Res 29(1):17–32Google Scholar
  108. Komárek O, Komárek J (1999) Diversity of freshwater and terrestrial habitats and their oxyphototroph microflora in the Arctowski Station region, South Shetland Islands. Pol Polar Res 20(3):259–282Google Scholar
  109. Komárek J, Montejano G (1994) Taxonomic evaluation of several Chlorogloea-species (Cyanoprokaryota) from inland biotopes. Algol Stud 74:1–26Google Scholar
  110. Komárek J, Kováčik L, Elster J, Komárek O (2012) Cyanobacterial diversity of Petuniabukta, Billefjorden, central Spitsbergen. Pol Polar Res 33(4):347–368Google Scholar
  111. Komárek J, Kaštovský J, Mareš J, Johansen JR (2014) Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) to the end of 2013 according to polyphasic approach. Preslia (in rev.)Google Scholar
  112. Komáromy ZP, Padisák J, Rajczy M (1985) Flora in the lamp-lit areas of the cave „Annabarlang“near Lillafured (Hungary). Ann Hist-Nat Musei Nat Hung 77:103–122Google Scholar
  113. Krautová M (2008) Cyanobacteria of wet walls and seeps in Grand Staircase–Escalante National Monument, Utah. M.S. thesis, John Carroll University, ClevelandGoogle Scholar
  114. Krumbein WE (2004) Life on and in stone - an endless story? In: Kwiatkowski D, Löfvendahl R (eds) Proceedings of the 10th International congress on deterioration and conservation of stone, Stockholm. ICOMOS, StockholmGoogle Scholar
  115. Lakatos M, Bilger W, Büdel B (2001) Carotenoid composition of terrestrial Cyanobacteria: response to natural light conditions in open rock habitats in Venezuela. Eur J Phycol 36:367–375Google Scholar
  116. Lamenti G, Tiano P, Tomaselli L (2000) Biodeterioration of ornamental marble statues in the Boboli Gardens (Florence, Italy). J Appl Phycol 12:427–433Google Scholar
  117. Lamprinou V, Pantazidou A, Papadogiannaki G, Radea C, Economou-Amili A (2009) Cyanobacteria and associated invertebrates in Leontari cave. Fottea 9:155–164Google Scholar
  118. Lamprinou V, Hernández-Mariné M, Canals T, Kormas K, Economou-Amilli A, Pantazidou A (2011) Two new stigonematalean cyanobacteria: Iphinoe spelaeobios gen. nov., sp. nov. and Loriellopsis cavernicola gen. nov., sp. nov. from Greek and Spanish caves. Morphology and Molecular Evaluation. Int J Syst Evol Microbiol 61(12):2907–2915PubMedGoogle Scholar
  119. Lamprinou V, Skaraki K, Kotoulas G, Economou-Amilli A, Pantazidou A (2012) Toxopsis calypsus gen. nov., sp. nov (Cyanobacteria, Nostocales) from cave ‘Francthi’, Peloponnese, Greece: a morphological and molecular evaluation. Int J Syst Evol Microbiol 62(12):2870–2877Google Scholar
  120. Lamprinou V, Mammali M, Katsifas EA, Pantazidou AI, Karagouni AD (2013a) Phenotypic and molecular biological characterization of cyanobacteria from marble surfaces of treated and untreated sites of Propylaea (Acropolis, Athens). Geomicrobiol J 30:371–378Google Scholar
  121. Lamprinou V, Hernández-Mariné M, Pachiadaki MG, Kormas KA, Economou-Amilli A, Pantazidou A (2013b) New findings on the true–branched monotypic genus Iphinoe (Cyanobacteria) from geographically isolated caves (Greece). Fottea 13(1):15–23Google Scholar
  122. Lundberg J, McFarlane DA, Brewer-Carias C (2010) An extraordinary example of photokarren in a sandstone cave, Cueva Charles Brewer, Chimantá Plateau, Venezuela: biogeomorphology on a small scale. Geomorphology 121:342–357Google Scholar
  123. Lüttge U (1997) Cyanobacterial tintenstrich communities and their ecology. Naturwissenschlaften 84:526–534Google Scholar
  124. Lüttge U, Büdel B, Ball E, Strube F, Weber P (1995) Photosyntesis of terrestrial cyanobacteria under light and dessication stress as expressed by chlorophyll fluorescence and gas-exchange. J Exp Bot 46(284):309–319Google Scholar
  125. Macedo MF, Miller AZ, Dionísio A, Saiz-Jimenez C (2009) Biodiversity of cyanobacteria and green algae on monuments in the Mediterranean Basin: an overview. Microbiology 155:3476–3490PubMedGoogle Scholar
  126. MacGaughey V (1918) Algae of the Hawaiian archipelago. II. Bot Gaz 65:121–149Google Scholar
  127. Mareš J, Lara Y, Dadáková I, Hauer T, Uher B, Wilmotte A, Kaštovský J (in press) Phylogenetic analysis of cultivation-resistant terrestrial cyanobacteria with massive sheaths (Stigonema spp. and Petalonema alatum, Nostocales, Cyanobacteria) using single-cell and filament sequencing of environmental samples. Journal of Phycology, DOI:  10.1111/jpy.12273
  128. Martinez A, Asencio AD (2010) Distribution of cyanobacteria at the Gelada Cave (Spain) by physical parameters. J Cave Karst Stud 72(1):11–20Google Scholar
  129. Mason-Williams MA (1966) Further investigations into bacterial and algal populations of caves in South Wales. Int J Speleol 2:389–395Google Scholar
  130. Mataloni G, Komárek J (2004) Gloeocapsopsis aurea, a new subaerophytic cyanobacterium from maritime Antarctica. Polar Biol 27(10):623–628Google Scholar
  131. McNamara CJ, Mitchell R (2005) Microbial deterioration of historic stone. Front Ecol Environ 3(8):445–451Google Scholar
  132. Miszalski Z, Büdel B, Lüttge U (1995) Sensitivity of terrestrial Cyanobacteria to light and sulphite stress. Pol J Environ Stud 4(4):55–59Google Scholar
  133. Mühlsteinová R, Hauer T (2013) Pilot survey of cyanobacterial diversity from the neighborhood of San Gerardo de Rivas, Costa Rica with a brief summary of current knowledge of terrestrial cyanobacteria in Central America. Braz J Bot 36:299–307Google Scholar
  134. Mulec J, Kosi G (2008) Algae in the aerophytic habitat of Račiše ponikve cave (Slovenia). Nat Sloven 10(1):39–49Google Scholar
  135. Mulec J, Kosi G (2009) Lampenflora algae and methods of growth control. J Cave Karst Stud 71(2):109–115Google Scholar
  136. Mulec J, Kosi G, Vrhovšek D (2008) Characterization of cave aerophytic algal communities and effects of irradiance levels on production of pigments. J Cave Karst Stud 70(1):3–12Google Scholar
  137. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858PubMedGoogle Scholar
  138. Nabout JC, da Silva Rocha B, Carneiro FM, Sant´Anna CL (2013) How many species of Cyanobacteria are there? Using a discovery curve to predict the species number. Biodivers Conserv 22:2907–2918Google Scholar
  139. Neuhof T, Schmieder P, Preussel K, Dieckmann R, Pham H, Bartl F, von Döhren H (2005) Hassallidin A, a glycosylated lipopeptide with antifungal activity from the cyanobacterium Hassallia sp. J Nat Prod 68:695–700PubMedGoogle Scholar
  140. Noguerol-Seoane A, Rifón-Lastra AB (1996) Aportación al conocimiento de la ficoflora epilítica en monumentos del noroeste de España: estudio del monasterio de Samos (Lugo). Anales Jard Bot Madrid 54:37–42Google Scholar
  141. Noguerol-Seoane A, Rifón-Lastra AB (2000) Estudio de la ficoflora epilíthica de las paredes graníticas exteriors de la iglesia románica de Sta. María de Fisterra (A Coruña, N.O. España). Portigaliae Acta Biol 19:91–96Google Scholar
  142. Nováček F (1934) Epilithické sinice serpentinů mohelenských. Pars I.: Chroococcales. In: Podpěra, J. (ed) Mohelno. Svaz pro ochranu přírody a domoviny v zemi Moravskoslezské, BrnoGoogle Scholar
  143. Nowicka-Krawczyk P, Żelazna-Wieczorek J, Otlewska A, Koziróg A, Rajkowska K, Piotrowska M, Gutarowska B, Żydzik-Białek A (2014) Diversity of an aerial phototrophic coating of historic buildings in the former Auschwitz II-Birkenau concentration camp. Sci Tot Environ 493:116–123Google Scholar
  144. Olsen CE, Johansen JR, Gomez SR, Lowe RL, Casamatta DA (2003) New records of cyanobacteria from epilithic habitats in the Great Smoky Mountains National Park. J Phycol 39(s1):46Google Scholar
  145. Olson R (2006) Control of lamp flora in developed caves. In: Hildreth-Werker V, Werker JC (eds) Cave conservation and restoration. National Speleological Society, HuntsvilleGoogle Scholar
  146. Ortega-Calvo JJ, Hernández-Mariné M, Sáiz-Jimenez C (1991) Biodeterioration of building materials by cyanobacteria and algae. Int Biodeterior 28(1–4):165–185Google Scholar
  147. Ortega-Calvo JJ, Sánchez-Castillo PM, Hernández-Mariné M, Sáiz-Jimenez C (1993) Isolation and characterization of epilithic chlorophytes and cyanobacteria from two Spanish cathedrals (Salamanca and Toledo). Nova Hedwigia 54(1–2):239–253Google Scholar
  148. Ortega-Calvo JJ, Ariño X, Hernández-Mariné M, Saiz-Jimenez C (1995) Factors affecting the weathering and colonization of monuments by phototrophic microorganisms. Sci Tot Environ 167:329–341Google Scholar
  149. Ortega-Morales O, Guezennec J, Hernandéz-Duque G, Gaylarde CC, Gaylarde PM (2000) Phototrophic Biofilms on Ancient Mayan Buildings in Yucatan, Mexico. Curr Microbiol 40:81–85PubMedGoogle Scholar
  150. Osorio-Santos K, Pietrasiak N, Bohunická M, Miscoe LH, Kováčik Ľ, Martin MP, Johansen JR (2014) Seven new species of Oculatella (Pseudanabaenales, Cyanobacteria): taxonomically recognizing cryptic diversification. Eur J Phycol 49(4):450–470Google Scholar
  151. Palik P (1960) Study into the algal flora of caves. Hidrologiai Kozlony 40:417–422Google Scholar
  152. Pentecost A (1992) A note on the colonization of limestone rocks by cyanobacteria. Arch Hydrobiol 124(2):167–172Google Scholar
  153. Pocs T (2005) Aerophytic Cyanobacteria from the Monti Apuseni (Romanian Western Carpathians, Transylvania), I. The epilithic crusts at the entrance of Huda lui Papara Cave. Kanitzia 13:99–108Google Scholar
  154. Potts M (1999) Mechanisms of desiccation tolerance in cyanobacteria (Minireview). Eur J Phycol 34:319–328Google Scholar
  155. Ramírez M, Hernández-Mariné M, Novelo E, Roldán M (2010) Cyanobacteria-containing biofilms from a Mayan monument in Palenque, Mexico. Biofouling 24(4):399–409Google Scholar
  156. Rascher U, Lakatos M, Büdel B, Lüttge U (2003) Photosynthetic field capacity of cyanobacteria of a tropical inselberg of the Guiana Highlands. Eur J Phycol 38:247–256Google Scholar
  157. Ress RJ, Lowe RL (2013) Contrast and comparison of aerial algal communities from two distinct regions in the U.S.A., the Great Smoky Mountains National Park (TN) and the Lake Superior region. Fottea 13(2):165–172Google Scholar
  158. Roldán M, Hernández-Mariné M (2009) Exploring the secrets of the three-dimensional architecture of phototrophic biofilms in caves. Int J Speleol 38:41–53Google Scholar
  159. Roldán M, Clavero E, Canals T, Gomez-Bolea A, Ariño X, Hernández-Mariné M (2004) Distribution of phototrophic biofilms in cavities (Garraf, Spain). Nova Hedwigia 78(3–4):329–351Google Scholar
  160. Saiz-Jimenez C (1997) Biodeterioration vs. biodegradation: the role of microorganisms in the removal of pollutants deposited on historic buildings. Int Biodeterior Biodegr 40(1–2):225–232Google Scholar
  161. Samad LK, Adhikary SP (2008) Diversity of micro-algae and cyanobacteria on building facades and monuments in India. Algae 23(2):91–114Google Scholar
  162. Sánchez-Antón F, Asencio Martínez AD (2007) Participation of Cyanophyceae in the biodeterioration of the stones of the Santo Domingo College in Orihuela, Alicante (SE Spain). Algol Stud 124:95–108Google Scholar
  163. Sant’Anna C, Branco L, Silva S (1991a) A new species of Gloeothece (Cyanophyceae, Microcystaceae) from São Paulo State, Brazil. Algol Stud 92:1–5Google Scholar
  164. Sant’Anna C, Silva S, Branco LHZ (1991b) Cyanophyceae da grutta que chora, municipio Ubatura, Esatdo de Sao Paulo, Brazil. Hoehnea 18:75–97Google Scholar
  165. Sant’Anna CL, Kaštovský J, Hentschke GS, Komárek J (2013) Phenotypic studies on terrestrial stigonematacean cyanobacteria from the Atlantic Rainforest, Sao Paulo State, Brazil. Phytotaxa 89:1–23Google Scholar
  166. Sarbu SM, Kane TC, Kinkle BK (1996) A chemo-autotrophically based cave ecosystem. Science 272:1953–1955PubMedGoogle Scholar
  167. Sarthou C, Therezien Y, Coute A (1995) Cyanophycées de l’inselberg des Nouragues (Guyane française). Nova Hedwigia 61:85–109Google Scholar
  168. Satapathy DP, Adhikary SP (1993) Epilithic algae from temple walls and caves at Brubaneswar, Puri and Konark. Phykos 32:17–20Google Scholar
  169. Saw JHW, Schatz M, Brown MV, Kunkel DD, Foster JS, Shick H, Christensen S, Hou S, Wan X, Donachie SP (2013) Cultivation and Complete genome sequencing of Gloeobacter kilaueensis sp. nov., from a Lava Cave in Kılauea Caldera, Hawaii. PLoS One 8(10):e76376PubMedCentralPubMedGoogle Scholar
  170. Schade A (1923) Die kryptogamischen Pflanzengesellschaften an den Felswänden der Sächsischen Schweiz. Ber German Bot Ges 41:49–59Google Scholar
  171. Schmidle W (1900) Algologische notizen. Allgemeine botanische Zeitschrift für Systematik, Floristik, Pflanzengeographie etc. 6:17–18, 33–35, 53–55, 77–79, 233–35Google Scholar
  172. Selvi B, Altuner Z (2007) Algae of Ballica Cave (Tokat- Turkey). Int J Nat Eng Sci 1(3):99–103Google Scholar
  173. Siebert J, Hirsch P, Hoffmann B, Gliesche CG, Preissl K, Jendrach M (1996) Cryptoendolithic microorganisms from Antarctic sandstone of linnaeus terrace (Asgard range): diversity, properties and interactions. Biodivers Conserv 5(11):1337–1363Google Scholar
  174. Skuja H (1970) Alghe cavernicole nelle zone illuminate delle grotte di Castellana (Murge di Bari). La Grotte d’Italia 4:193–202Google Scholar
  175. Smith T, Olson R (2007) A taxonomic survey of Lamp flora (algae and cyanobacteria) in electrically lit passages within Mammoth Cave National Park, Kentucky. Int J Speleol 36:105–114Google Scholar
  176. Smith T, Piccin T (2004) Algal taxonomic survey of Zion National Park and Cedar Breaks National Monument, Utah, and Pipe Spring National Monument, Arizona. Soutwes Nat 49(3):395–417Google Scholar
  177. Souza-Egipsy V, Wierzchos J, Sancho C, Belmonte A, Ascaso C (2004) Role of biological soil crust cover in bioweathering and protection of sandstone in semi-arid landscape (Torrollones de Gabarda, Huesca, Spain). Earth Surf Pro Land 29(13):1651–1661Google Scholar
  178. Šramková K, Kováčik Ľ (2005) Výskyt cyanobactérií a rias v nárostoch “lampenflory” v šiestich sprístupnených jaskyniach na Slovensku. Bull Slovenskej Bot Spol (Bratislava) 27:17–21Google Scholar
  179. Strunecký O, Elster J, Komárek J (2011) Taxonomic revision of the freshwater cyanobacterium „Phormidium“murrayi = Wilmottia murrayi. Fottea 11(1):57–71Google Scholar
  180. Tian Y, Chen J, Zhang J, Li S, Bao H (2001) New taxa of Chroococcaceae from Yunnan, China. Acta Phytotaxon Sin 39:280–282Google Scholar
  181. Tian Y, Zhang J, Song L, Bao H (2002) A Study on aerial cyanophyta (cyanobacteria) on the surface of carbonate rock in Yunnan Stone Forest, Yunnan Province, China. Acta Oecol Sin 22:1793–1802Google Scholar
  182. Tian YP, Zhang J, Song LH, Bao HS (2004) The role of aerial algae in the formation of the landscape of the Yunnan Stone Forest, Yunnan Province, China. Sci China Ser D 47:846–864Google Scholar
  183. Uher B, Aboal M, Kováčik Ľ (2005) Epilithic and chasmoendolithic phycoflora of monuments and buildings in South-Eastern Spain. Cryptogam Algol 26(3):275–358Google Scholar
  184. Uzunov BA, Stoyneva MP, Gartner G (2008) Review of the studies on aero-terrestrial cyanoprokaryotes and algae in Bulgaria with a checklist oft he recorded species. II. Phytol Balc 14(1):11–18Google Scholar
  185. Vaccarino MA, Johansen JR (2011) Scytonematopsis contorta sp. nov. (Nostocales), a new species from the Hawaiian Islands. Fottea 11:149–161Google Scholar
  186. Videla HA, Guiamet PS, Gomez de Saravia S (2000) Biodeterioration of Mayan archaeological sites in the Yucatan Peninsula, Mexico. Int Biodeterior Biodegr 46:335–341Google Scholar
  187. Vinogradova ON, Mikhailyuk TI (2009) Algal flora of caves and grottoes in the national nature park, “Podilsky Tovtry” (Ukraine). Algologia 19(2):155–171Google Scholar
  188. Warscheid T, Braams J (2000) Biodeterioration of stone: a review. Int Biodeterior Biodegr 46:343–368Google Scholar
  189. Watanabe M, Komárek J (1988) Blue-green algae from Kathmandu. In: Watanabe M, Malla SB, Malla SB (eds) Cryptogames of the Himalaya, Vol. 1, The Kathmandu valley, vol 1. National Science Museum, TsukubaGoogle Scholar
  190. Watanabe A, Komárek J (1994) Several cyanoprokaryotes from Sagarmatha National Park, Nepal Himalayas. Bull Nat Sci Museum, Tokyo, Ser B (Botany) 20:1–31Google Scholar
  191. Watanabe MM, Watanabe M, Yamagishi T (1979) Freshwater algae of Papua New Guinea (3) blue–green algae from Mt. Wilhelm. In: Kurokawa S (ed) Studies on cryptogams of Papua New Guinea. Academia Scientific Book, TokyoGoogle Scholar
  192. Weber-van Bosse A (1913) Liste de algues du Siboga. I. Myxophyceae, Chlorophyceae, Phaeophyceae avec le concours de M. Th. Reinbold. Siboga-Expeditie 59:1–186Google Scholar
  193. Welton RG, Cuthbert SJ, McLean R, Hursthouse A, Hughes J (2003) A preliminary study of the phycological degradation of natural stone masonry. Environ Geochem Health 25:139–145PubMedGoogle Scholar
  194. Welwitsch F (1868) The Pedras Negras of Pundo Andongo in Angola. J Travel Nat Hist 1:22–36Google Scholar
  195. West W, West GS (1894) On some freshwater algae from the West Indies. Bot J Linn Soc 30:264–280Google Scholar
  196. West W, West GS (1897) Welwitsch’s African freshwater algae. J Bot 35:264–272Google Scholar
  197. West W, West GS (1899) A further contribution to the freshwater alfae of the West Indies. Bot J Linn Soc 34:279–295Google Scholar
  198. West W, West GS (1902) A contribution to the freshwater algae of Ceylon. Trans Linn Soc Lond. 2nd Ser 6:123–215Google Scholar
  199. Whitton BA (ed) (2012) Ecology of cyanobacteria II. Their diversity in space and time. Springer, DordrechtGoogle Scholar
  200. Wille N (1915) Süsswasseralgen von den Samoainseln, Hawaii, den Salomonsinseln und Ceylon : gesammelt von Dr. Krechinger. Denkschriften der Kaiserlichen Akademie der Wissenschaften/Mathematisch-Naturwissenschaftliche Classe. 91:141–62Google Scholar
  201. Zammit G, Kaštovský J, Albertano P (2010) A first cytomorphological and molecular characterisation of a new Stigonematalean cyanobacterial morphotype isolated from Maltese catacombs. Algol Stud 135:1–14Google Scholar
  202. Zammit G, Billi D, Shubert E, Kaštovský J, Albertano P (2011) The biodiversity of subaerophytic biofilms from Maltese hypogea. Fottea 11(1):187–201Google Scholar
  203. Zehnder A (1953) Beitrag zur Kenntnis von Mikroklima und Algenvegetation des nackten Gesteins in den Tropen. Ber Schweiz Bot Ges 63:5–26Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Tomáš Hauer
    • 1
    • 2
    Email author
  • Radka Mühlsteinová
    • 1
    • 2
  • Markéta Bohunická
    • 1
  • Jan Kaštovský
    • 2
  • Jan Mareš
    • 1
    • 2
  1. 1.Centre for PhycologyInstitute of Botany CASTřeboňCzech Republic
  2. 2.Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic

Personalised recommendations