Biodiversity and Conservation

, Volume 24, Issue 6, pp 1403–1421

Restricted by borders: trade-offs in transboundary conservation planning for large river systems

  • Anna Dolezsai
  • Péter Sály
  • Péter Takács
  • Virgilio Hermoso
  • Tibor Erős
Original Paper

Abstract

Effective conservation of freshwater biodiversity requires accounting for connectivity and the propagation of threats along river networks. With this in mind, the selection of areas to conserve freshwater biodiversity is challenging when rivers cross multiple jurisdictional boundaries. We used systematic conservation planning to identify priority conservation areas for freshwater fish conservation in Hungary (Central Europe). We evaluated the importance of transboundary rivers to achieve conservation goals by systematically deleting some rivers from the prioritization procedure in Marxan and assessing the trade-offs between complexity of conservation recommendations (e.g., conservation areas located exclusively within Hungary vs. transboundary) and cost (area required). We found that including the segments of the largest transboundary rivers (i.e. Danube, Tisza) in the area selection procedure yielded smaller total area compared with the scenarios which considered only smaller national and transboundary rivers. However, analyses which did not consider these large river segments still showed that fish diversity in Hungary can be effectively protected within the country’s borders in a relatively small total area (less than 20 % of the country’s size). Since the protection of large river segments is an unfeasible task, we suggest that transboundary cooperation should focus on the protection of highland riverine habitats (especially Dráva and Ipoly Rivers) and their valuable fish fauna, in addition to the protection of smaller national rivers and streams. Our approach highlights the necessity of examining different options for selecting priority areas for conservation in countries where transboundary river systems form the major part of water resources.

Keywords

Freshwater conservation areas Systematic conservation planning Marxan Rivers Fish 

References

  1. Abell R, Allan JD, Lehner B (2007) Unlocking the potential of protected areas for freshwaters. Biol Conserv 134:48–63. doi:10.1016/j.biocon.2006.08.017 CrossRefGoogle Scholar
  2. Abell R, Thieme ML, Revenga C, Bryer M, Kottelat M, Bogutskaya N, Coad B, Mandrak N, Balderas SC, Bussing W, Stiassny MLJ, Skelton P, Allen GR, Unmack P, Naseka A, Ng R, Sindorf N, Robertson J, Armijo E, Higgins V, Heibel TJ, Wikramanayake E, Olson D, López HL, Reis RE, Lundberg JG, Pérez MHS, Petry P (2008) Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. Bioscience 58(5):403–414. doi:10.1641/B580507 CrossRefGoogle Scholar
  3. Antal L, Halasi-Kovács B, Nagy SA (2013) Changes in fish assemblage in the Hungarian section of River Szamos/Somes after a massive cyanide and heavy metal pollution. Northwest J Zool 9:131–138Google Scholar
  4. Ball IR, Possingham HP, Watts M (2009) Marxan and relatives: software for spatial conservation prioritisation. In: Moilanen A, Wilson KA, Possingham HP (eds) Spatial conservation prioritisation: quantitative methods and computational tools, vol 14. Oxford University Press, Oxford, pp 185–195Google Scholar
  5. Balmford A, Gaston KJ (1999) Why biodiversity surveys are good value? Nature 398:204–205CrossRefGoogle Scholar
  6. Bănărescu P (1990) Zoogeography of freshwaters: general distribution and dispersal of freshwater animals, vol 1. Aula Verlag, WiesbadenGoogle Scholar
  7. Bergerot B, Lasne E, Vigneron T, Laffaille P (2008) Prioritization of fish assemblages with a view to conservation and restoration on a large scale European basin, the Loire (France). Biodivers Conserv 17:2247–2262. doi:10.1007/s10531-008-9331-6 CrossRefGoogle Scholar
  8. Bivand RS, Lewin-Koh N (2014) Maptools: tools for reading and handling spatial objects. R package version 0.8–29. http://CRAN.R-project.org/package=maptools
  9. Bivand RS, Rundel C (2014). Rgeos: interface to geometry engine—open source (GEOS). R package version 0.3–3. http://CRAN.R-project.org/package=rgeos
  10. Cantor SB, Sun CC, Tortolero-Luna G, Richards-Kortum R, Follen M (1999) A comparison of C/B ratios from studies using receiver operating characteristic curve analysis. J Clin Epidemiol 52(9):885–892. doi:10.1016/S0895-4356(99)00075-X PubMedCrossRefGoogle Scholar
  11. Cunningham SA (2005) Incident, accident, catastrophe: cyanide on the Danube. Disasters 29:99–128. doi:10.1111/j.0361-3666.2005.00276.x PubMedCrossRefGoogle Scholar
  12. Dudgeon D, Arthington AH, Gessner MO, Kawabata Z-I, Knowler DJ, Léveque C, Naiman RJ, Prieur-Richard A-H, Soto D, Stiassny MLJ, Sullivan CA (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81:163–182. doi:10.1017/S1464793105006950 PubMedCrossRefGoogle Scholar
  13. Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberon J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151. doi:10.1111/j.2006.0906-7590.04596.x CrossRefGoogle Scholar
  14. Erős T (2007) Partitioning the diversity of riverine fish: the roles of habitat types and non-native species. Freshw Biol 52:1400–1415. doi:10.1111/j.1365-2427.2007.01777.x CrossRefGoogle Scholar
  15. Esselman PC, Allan JD (2011) Application of species distribution models and conservation planning software to the design of a reserve network for the riverine fishes of northeastern Mesoamerica. Freshw Biol 56:71–88. doi:10.1111/j.1365-2427.2010.02417.x CrossRefGoogle Scholar
  16. Ferrier S, Guisan A (2006) Spatial modelling of biodiversity at the community level. J Appl Ecol 43:393–404CrossRefGoogle Scholar
  17. Filipe AF, Marques TA, Seabra S, Tiago P, Riberio F, Moreira da Cost L, Cowx IG, Collares-Pereira MJ (2004) Selection of priority areas for fish conservation in Guadiana river basin, Iberian Peninsula. Conservation Biology 18:189–200. doi:10.1111/j.1523-1739.2004.00620.x CrossRefGoogle Scholar
  18. Freeman EA, Moisen G (2008) PresenceAbsence: an R package for presence-absence model analysis. J Stat Softw 23:1–31. http://www.jstatsoft.org/v23/i11
  19. Guisan A, Tingley R, Baumgartner JB et al (2013) Predicting species distributions for conservation decisions. Ecol Lett 16:1424–1435PubMedCentralPubMedCrossRefGoogle Scholar
  20. Harka Á, Sallai Z (2004) Magyarország halfaunája (Fish fauna of Hungary). Nimfea Természetvédelmi egyesület, Szarvas (In Hungarian)Google Scholar
  21. Harper K (2005) “Wild capitalism” and “Ecocolonialism”: a tale of two rivers. Am Anthropol 107:221–233. doi:10.1525/aa.2005.107.2.221 CrossRefGoogle Scholar
  22. Hermoso V, Linke S, Prenda J, Possingham HP (2011) Addressing longitudinal connectivity in the sytematic conservation planning for freshwaters. Freshw Biol 56:57–70. doi:10.1111/j.1365-2427.2009.02390.x CrossRefGoogle Scholar
  23. Hermoso V, Kennard MJ, Linke S (2014a) Assessing the risks and opportunities of presence-only data for conservation planning. Journal of Biogeography 42:218–228. doi:10.1111/jbi.12393 CrossRefGoogle Scholar
  24. Hermoso V, Kennard MJ, Linke S (2014b) Evaluating the costs and benefits of systematic data acquisition for conservation assessments. Ecography. doi:10.1111/ecog.00792 Google Scholar
  25. Higgins JV, Bryer MT, Khoury ML, Fitzhug TW (2005) A freshwater classification approach for biodiversity conservation planning. Conserv Biol 19(2):432–445. doi:10.1111/j.1523-1739.2005.00504.x CrossRefGoogle Scholar
  26. Hijmans RJ (2014) Raster: geographic data analysis and modeling. R package version 2.2-12. http://CRAN.R-project.org/package=raster
  27. Hijmans RJ, Cameron SE, Parra JL (2014) WorldClim version 1.4. Museum of vertebrate zoology, University of California, Berkeley. Available at: http://www.worldclim.org/. Accessed 6 Apr 2014
  28. Januchowski-Hartley SR, McIntyre PB, Diebel M, Doran PJ, Infante DM, Joseph C, Allan JD (2013) Restoring aquatic ecosystem connectivity requires expanding inventories of both dams and road crossings. Front Ecol Environ 11:211–217CrossRefGoogle Scholar
  29. Jiménez-Valverde A, Lobo JM (2007) Threshold criteria for conversion of probability of species presence to either–or presence–absence. Acta Oecol 31(3):361–369. doi:10.1016/j.actao.2007.02.001 CrossRefGoogle Scholar
  30. Leathwick JR, Rowe D, Richardson J, Elith J, Hastie T (2005) Using multivariate adaptive regression splines to predict the distributions of New Zealand’s freshwater diadromous fish. Freshw Biol 50(12):2034–2052. doi:10.1111/j.1365-2427.2005.01448.x CrossRefGoogle Scholar
  31. Leathwick JR, Elith J, Hastiec T (2006) Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions. Ecol Model 199:188–196. doi:10.1016/j.ecolmodel.2006.05.022 CrossRefGoogle Scholar
  32. Linke S, Kennard MJ, Hermoso V, Olden JD, Stein J, Pusey BJ (2012) Merging connectivity rules and large-scale condition assessment improves conservation adequacy in river systems. J Appl Ecol 49:1036–1045. doi:10.1111/j.1365-2664.2012.02177.x CrossRefGoogle Scholar
  33. Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28(3):385–393. doi:10.1111/j.0906-7590.2005.03957.x CrossRefGoogle Scholar
  34. Lucas C (2001) The Baia Mare and Baia Borsa accidents: cases of severe transboundary water pollution. Environ Policy Law 31:106–111Google Scholar
  35. Margules CR, Pressey RL (2000) Systematic conservation planning, insight review articles. Nature 405:243–253. doi:10.1038/35012251 PubMedCrossRefGoogle Scholar
  36. Milborrow S, Hastie T, Tibshirani R (2014) Earth: multivariate adaptive regression spline models. R package version 3.2–7. http://CRAN.R-project.org/package=earth
  37. Moilanen A, Leathwick J, Elith J (2008) A method for spatial freshwater conservation prioritization. Freshw Biol 53:577–592. doi:10.1111/j.1365-2427.2007.01906.x CrossRefGoogle Scholar
  38. Nel JL, Roux DJ, Maree G, Kleynhans CJ, Moolman J, Reyers B, Cowling RM (2007) Rivers in peril inside and outside protected areas: a systematic approach to conservation assessment of river ecosystems. Divers Distrib 13:341–352. doi:10.1111/j.1472-4642.2007.00308.x CrossRefGoogle Scholar
  39. Nel JL, Reyers B, Roux DJ, Cowling RM (2009) Expanding protected areas beyond their terrestrial comfort zone: identifying spatial options for river conservation. Biol Conserv 142:1605–1616. doi:10.1016/j.biocon.2009.02.031 CrossRefGoogle Scholar
  40. Pebesma EJ, Bivand RS (2005) Classes and methods for spatial data in R. R News 5(2). http://cran.r-project.org/doc/Rnews/
  41. Pracheil BM, McIntyre PB, Lyons JD (2013) Enhancing conservation of large-river biodiversity by accounting for tributaries. Front Ecol Environ 11:124–128CrossRefGoogle Scholar
  42. Pressey RL (2004) Conservation planning and biodiversity: assembling the best data for the job. Conserv Biol 18:1677–1681CrossRefGoogle Scholar
  43. Pressey RL, Nicholls AO (1989) Efficiency in conservation evaluation: scoring versus iterative approaches. Biol Conserv 50:199–218. doi:10.1016/0006-3207(89)90010-4 CrossRefGoogle Scholar
  44. QGIS Development Team (2012) QGIS user guide. Online available: http://docs.qgis.org/1.8/pdf/QGIS-1.8-UserGuide-en.pdf
  45. R Core Team (2013) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. http://www.R-project.org/
  46. Sály P, Takács P, Kiss I, Bíró P, Erős T (2011) The relative influence of spatial context and catchment- and site-scale environmental factors on stream fish assemblages in a human modified landscape. Ecol Freshw Fish 20:251–262. doi:10.1111/j.1600-0633.2011.00490.x CrossRefGoogle Scholar
  47. Sanderson EW, Malanding J, Levy MA, Redford KH, Wannebo AW, Woolmer W (2002) The human footprint and the last of the wild. BioScience 52:891–904. doi: 10.1641/0006-3568(2002)052[0891:THFATL]2.0.CO;2 http://sedac.ciesin.columbia.edu/data/set/wildareas-v2-human-footprint-geographic/data-download. Accessed 16 May 2013
  48. Saunders DL, Meeuwig JJ, Vincent ACJ (2002) Freshwater protected areas: strategies for conservation. Conserv Biol 16:30–41. doi:10.1046/j.1523-1739.2002.99562.x CrossRefGoogle Scholar
  49. Steenmans C, Büttner G (2006) Mapping land cover of Europe for 2006 under GMES. In: Proceedings of the 2nd workshop of the EARSeL SIG on land use and land cover, Bonn, Germany, 28–30 September 2006:202–207. http://www.eea.europa.eu/data-and-maps/data/clc-2006-vector-data-version-2
  50. Strayer DL, Dudgeon D (2010) Freshwater biodiversity conservation: recent progress and future challenges. J N Am Benthol Society 29:344–358CrossRefGoogle Scholar
  51. Strecker AL, Olden JD, Whittier JB, Paukert CP (2011) Defining conservation priorities for freshwater fishes according to taxonomic, functional, and phylogenetic diversity, ecological applications 21:3002-3013. doi: 10.1890/11-0599.1
  52. Sz Závoczky (2005) Hydroelectricity or National Park? Nat Somogy 7:5–9 In English with a summary in HungarianGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Anna Dolezsai
    • 1
  • Péter Sály
    • 1
  • Péter Takács
    • 1
  • Virgilio Hermoso
    • 2
  • Tibor Erős
    • 1
  1. 1.Balaton Limnological InstituteMTA Centre for Ecological ResearchTihanyHungary
  2. 2.Australian Rivers Institute and Tropical Rivers and Coastal Knowledge, National Environmental Research Program Northern Australia HubGriffith UniversityNathanAustralia

Personalised recommendations