Biodiversity and Conservation

, Volume 23, Issue 10, pp 2393–2414 | Cite as

Spatio-temporal variation in species assemblages in field edges: seasonally distinct responses of solitary bees to local habitat characteristics and landscape conditions

  • Markus Arne Kjær Sydenham
  • Katrine Eldegard
  • Ørjan Totland
Original Paper


The bees (Hymenoptera: Apiformes) are important pollinators in many ecosystems, but their diversity has declined in Europe during the past century, mainly due to habitat loss. However, some of the habitat requirements of wild bees are met in anthropogenic landscape elements, such as road sides, power-line strips and field edges. Moreover, as the bee species assemblages change throughout the season the habitat requirements of the bee fauna may change accordingly. Understanding such seasonally distinct responses of solitary bees with different phenologies may be of high value for local conservation planning. The purpose of this study was to examine if the habitat quality of field edges for solitary bees change throughout the season, and how this temporal variation relates to local habitat and landscape conditions. By sampling solitary bees in 18 field edges in southeast Norway throughout the season we found that the species richness and abundance of bees was highest in sun exposed field edges, independently of the season. However, we found phenologically distinct responses to the landscape context. Moreover, field edges situated in landscapes with a high proportion of forests and semi-natural landscape elements hosted the most phenologically diverse bee species assemblages. We conclude that in order to fulfil the habitat requirements of bee species assemblages throughout the season, one should conserve and direct habitat restoration schemes towards increasing sun exposure at field edges with a diverse flora and a high proportion of semi-natural areas in the vicinity.


Landscape ecology Solitary bees Bee phenology Bee conservation Restoration ecology 



We wish to thank Mike Edwards and David Baldock from the Bees Wasps and Ants Recording Society (BWARS) for invaluable help with bee identification. David Sydenham, Håkon Celius and Celin Marie Hoel Olsen assisted during field work. We thank Anders Nielsen for comments on an earlier version of the manuscript. The manuscript was further improved by the comments of Jorge M. Lobo and two anonymous reviewers.

Supplementary material

10531_2014_729_MOESM1_ESM.doc (38 kb)
Supplementary material 1 (DOC 38 kb)
10531_2014_729_MOESM2_ESM.doc (42 kb)
Supplementary material 2 (DOC 43 kb)
10531_2014_729_MOESM3_ESM.doc (34 kb)
Supplementary material 3 (DOC 34 kb)
10531_2014_729_MOESM4_ESM.doc (42 kb)
Supplementary material 4 (DOC 42 kb)
10531_2014_729_MOESM5_ESM.doc (82 kb)
Supplementary material 5 (DOC 82 kb)
10531_2014_729_MOESM6_ESM.doc (208 kb)
Supplementary material 6 (DOC 208 kb)


  1. Amiet F (2001) Apidae 3 : Halictus, Lasioglossum. Centre suisse de cartographie de la faune : Schweizerische Entomologische GesellschaftGoogle Scholar
  2. Amiet F (2004) Apidae. 4, Anthidium, Chelostoma, Coelioxys, Dioxys, Heriades, Lithurgus, Megachile, Osmia, Stelis. Centre suisse de cartographie de la faune : Schweizerische Entomologische GesellschaftGoogle Scholar
  3. Amiet F (2007) Apidae. 5, Ammobates, Ammobatoides, Anthophora, Biastes, Ceratina, Dasypoda, Epeoloides, Epeolus, Eucera, Macropis, Melecta, Melitta, Nomada, Pasites, Tetralonia, Thyreus, Xylocopa. Centre suisse de cartographie de la faune : Schweizerische Entomologische GesellschaftGoogle Scholar
  4. Amiet F, Neumeyer R, Müller A (1999) Apidae 2 : Colletes, Dufourea, Hylaeus, Nomia, Nomioides, Rhophitoides, Rophites, Sphecodes, Systropha. Centre suisse de cartographie de la faune : Schweizerische Entomologische GesellschaftGoogle Scholar
  5. Ascher JS, Pickering J (2010) Discover life bee species guide and world checklist (Hymenoptera: Apoidea: Anthophila). The Polistes Corporation. Accessed March 2012
  6. Baldock DW, Collins GA (2008) Bees of Surrey. Surrey Wildlife Trust, WokingGoogle Scholar
  7. Bates D, Maechler M, Bolker B, Walker S (2013) lme4: Linear mixed-effects models using Eigen and S4. R package version 1.0-5. Accessed Jan 2014
  8. Biesmeijer JC, Roberts SPM, Reemer M, Ohlemuller R, Edwards M, Peeters T, Schaffers AP, Potts SG, Kleukers R, Thomas CD, Settele J, Kunin WE (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313:351–354. doi: 10.1126/science.1127863 PubMedCrossRefGoogle Scholar
  9. Bjørdal I, Bjørkelo K (2006) AR5 Klassifikasjonssystem. Håndbok fra Skog og Landskap. Norsk institutt for skog og landskap, ÅsGoogle Scholar
  10. Calabuig I (2000) Solitary bees and bumblebees in a Danish agricultural landscape. University of Copenhagen, CopenhagenGoogle Scholar
  11. Cane JH, Payne JA (1993) Regional, annual, and seasonal-variation in pollinator guilds - intrinsic traits of bees (Hymenoptera, Apoidea) underlie their patterns of abundance at Vaccinium-Ashei (Ericaceae). Ann Entomol Soc Am 86:577–588Google Scholar
  12. Carre G, Roche P, Chifflet R, Morison N, Bommarco R, Harrison-Cripps J, Krewenka K, Potts SG, Roberts SPM, Rodet G, Settele J, Steffan-Dewenter I, Szentgyorgyi H, Tscheulin T, Westphal C, Woyciechowski M, Vaissiere BE (2009) Landscape context and habitat type as drivers of bee diversity in European annual crops. Agric Ecosyst Environ 133:40–47. doi: 10.1016/j.agee.2009.05.001 CrossRefGoogle Scholar
  13. Crawley MJ (2013) The R book, 2nd edn. Wiley, ChichesterGoogle Scholar
  14. Droege S, Tepedino VJ, Lebuhn G, Link W, Minckley RL, Chen Q, Conrad C (2010) Spatial patterns of bee captures in North American bowl trapping surveys. Insect Conserv Diver 3:15–23. doi: 10.1111/j.1752-4598.2009.00074.x CrossRefGoogle Scholar
  15. Everaars J, Strohbach MW, Gruber B, Dormann CF (2011) Microsite conditions dominate habitat selection of the red mason bee (Osmia bicornis, Hymenoptera: Megachilidae) in an urban environment: a case study from Leipzig, Germany. Landscape Urban Plan 103:15–23. doi: 10.1016/j.landurbplan.2011.05.008 CrossRefGoogle Scholar
  16. FAO (2008) Rapid assessment of pollinators’ status a contribution to the international initiative for the conservation and sustainable use of pollinators. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  17. Follo (2009) Kartportalen. Landbrukskontoret i Follo. Accessed Oct 2011
  18. Gallai N, Salles JM, Settele J, Vaissiere BE (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ 68:810–821. doi: 10.1016/j.ecolecon.2008.06.014 CrossRefGoogle Scholar
  19. Gathmann A, Tscharntke T (2002) Foraging ranges of solitary bees. J Anim Ecol 71:757–764. doi: 10.1046/j.1365-2656.2002.00641.x CrossRefGoogle Scholar
  20. Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391CrossRefGoogle Scholar
  21. Hannon LE, Sisk TD (2009) Hedgerows in an agri-natural landscape: potential habitat value for native bees. Biol Conserv 142(10):2140–2154. doi: 10.1016/j.biocon.2009.04.014 CrossRefGoogle Scholar
  22. Hansen LO, Lønnve OJ, Ødegaard F (2010) Hymenoptera. In: Kålås JA, Viken Å, Skjelseth S (eds) The 2010 Norwegian red list for species. Norwegian Biodiversity Information Center, Trondheim, p 480Google Scholar
  23. Hendrickx F, Maelfait JP, Van Wingerden W, Schweiger O, Speelmans M, Aviron S, Augenstein I, Billeter R, Bailey D, Bukacek R, Burel F, Diekotter T, Dirksen J, Herzog F, Liira J, Roubalova M, Vandomme V, Bugter R (2007) How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. J Appl Ecol 44:340–351. doi: 10.1111/j.1365-2664.2006.01270.x CrossRefGoogle Scholar
  24. Holzschuh A, Steffan-Dewenter I, Tscharntke T (2010) How do landscape composition and configuration, organic farming and fallow strips affect the diversity of bees, wasps and their parasitoids? J Anim Ecol 79:491–500. doi: 10.1111/j.1365-2656.2009.01642.x PubMedCrossRefGoogle Scholar
  25. Hopwood JL (2008) The contribution of roadside grassland restorations to native bee conservation. Biol Conserv 141(10):2632–2640. doi: 10.1016/j.biocon.2008.07.026 CrossRefGoogle Scholar
  26. Kearns CA, Inouye DW, Waser NM (1998) Endangered mutualisms: the conservation of plant-pollinator interactions. Annu Rev Ecol Syst 29:83–112CrossRefGoogle Scholar
  27. Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464PubMedCrossRefGoogle Scholar
  28. Kevan PG (1999) Pollinators as bioindicators of the state of the environment: species, activity and diversity. Agr Ecosyst Environt 74:373–393CrossRefGoogle Scholar
  29. Kleijn D, van Langevelde F (2006) Interacting effects of landscape context and habitat quality on flower visiting insects in agricultural landscapes. Basic Appl Ecol 7:201–214. doi: 10.1016/j.baae.2005.07.011 CrossRefGoogle Scholar
  30. Klein AM, Steffan-Dewenter I, Tscharntke T (2003) Fruit set of highland coffee increases with the diversity of pollinating bees. Proc R Soc B 270:955–961. doi: 10.1098/rspb.2002.2306 PubMedCentralPubMedCrossRefGoogle Scholar
  31. Klein AM, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc B 274:303–313. doi: 10.1098/rspb.2006.3721 PubMedCentralPubMedCrossRefGoogle Scholar
  32. Le Feon V, Schermann-Legionnet A, Delettre Y, Aviron S, Billeter R, Bugter R, Hendrickx F, Burel F (2010) Intensification of agriculture, landscape composition and wild bee communities: a large scale study in four European countries. Agric Ecosyst Environ 137:143–150. doi: 10.1016/j.agee.2010.01.015 CrossRefGoogle Scholar
  33. Murray TE, Kuhlmann M, Potts SG (2009) Conservation ecology of bees: populations, species and communities. Apidologie 40:211–236. doi: 10.1051/apido/2009015 CrossRefGoogle Scholar
  34. Nielsen C (2010) ACCRU Tools: extension for ArcGIS, release 9.3.1 [software]. University of Alberta. Accessed Sept 2011
  35. Oertli S, Müller A, Dorn S (2005) Ecological and seasonal patterns in the diversity of a species-rich bee assemblage (Hymenoptera : Apoidea : Apiformes). Eur J Entomol 102(1):53–63CrossRefGoogle Scholar
  36. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL., Solymos P, Henry M, Stevens H, Wagner H (2013) Vegan: community ecology package. R package version 2.0-9Google Scholar
  37. Potts SG, Vulliamy B, Dafni A, Ne`eman G, Willmer P (2003) Linking bees and flowers: how do floral communities structure pollinator communities? Ecology 84:2628–2642CrossRefGoogle Scholar
  38. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353. doi: 10.1016/j.tree.2010.01.007 PubMedCrossRefGoogle Scholar
  39. R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051.URL
  40. Richards MH, Rutgers-Kelly A, Gibbs J, Vickruck JL, Rehan SM, Sheffield CS (2011) Bee diversity in naturalizing patches of Carolinian grasslands in southern Ontario, Canada. Can Entomol 143:279–299. doi: 10.4039/N11-010 CrossRefGoogle Scholar
  41. Russell KN, Ikerd H, Droege S (2005) The potential conservation value of unmowed powerline strips for native bees. Biol Conserv 124:133–148. doi: 10.1016/j.biocon.2005.01.022 CrossRefGoogle Scholar
  42. Samnegard U, Persson AS, Smith HG (2011) Gardens benefit bees and enhance pollination in intensively managed farmland. Biol Conserv 144:2602–2606. doi: 10.1016/j.biocon.2011.07.008 CrossRefGoogle Scholar
  43. Schmid-Egger C, Scheuchl E (1997) Illustrierte Bestimmungstabellen der wildbienen Deutschlands und Österreichs unter berücksichtigung der arten der schweiz: schlüssel der arten der familie Andrenidae, vol III. Eigenverlag, VeldenGoogle Scholar
  44. Sjödin NE, Bengtsson J, Ekbom B (2008) The influence of grazing intensity and landscape composition on the diversity and abundance of flower-visiting insects. J Appl Ecol 45:763–772. doi: 10.1111/j.1365-2664.2007.01443.x CrossRefGoogle Scholar
  45. Steffan-Dewenter I, Munzenberg U, Burger C, Thies C, Tscharntke T (2002) Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83:1421–1432. doi: 10.2307/3071954 CrossRefGoogle Scholar
  46. Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505CrossRefGoogle Scholar
  47. Westphal C, Bommarco R, Carre G, Lamborn E, Morison N, Petanidou T, Potts SG, Roberts SPM, Szentgyorgyi H, Tscheulin T, Vaissiere BE, Woyciechowski M, Biesmeijer JC, Kunin WE, Settele J, Steffan-Dewenter I (2008) Measuring bee diversity in different European habitats and biogeographical regions. Ecol Monogr 78:653–671CrossRefGoogle Scholar
  48. Westrich P (1996) Habitat requirements of central European bees and the problems of partial habitats. In: Matheson A, Buchmann SL, O’Toole C, Westrich P, Williams IH (eds) The Conservation of bees. Academic Press, London, pp 1–16Google Scholar
  49. Williams NM, Kremen C (2007) Resource distributions among habitats determine solitary bee offspring production in a mosaic landscape. Ecol Appl 17:910–921PubMedCrossRefGoogle Scholar
  50. Williams NM, Crone EE, Roulston TH, Minckley RL, Packer L, Potts SG (2010) Ecological and life-history traits predict bee species responses to environmental disturbances. Biol Conserv 143:2280–2291. doi: 10.1016/j.biocon.2010.03.024 CrossRefGoogle Scholar
  51. Zurbuchen A, Cheesman S, Klaiber J, Müller A, Hein S, Dorn S (2010a) Long foraging distances impose high costs on offspring production in solitary bees. J Anim Ecol 79:674–681. doi: 10.1111/j.1365-2656.2010.01675.x PubMedCrossRefGoogle Scholar
  52. Zurbuchen A, Landert L, Klaiber J, Müller A, Hein S, Dorn S (2010b) Maximum foraging ranges in solitary bees: only few individuals have the capability to cover long foraging distances. Biol Conserv 143:669–676. doi: 10.1016/j.biocon.2009.12.003 CrossRefGoogle Scholar
  53. Zuur AF, Hilbe JM, Leno EN (2013) A beginner’s guide to GLM and GLMM with R—a frequentist and Bayesian perspective for ecologists. Highland statistics Ltd., NewburghGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Markus Arne Kjær Sydenham
    • 1
  • Katrine Eldegard
    • 1
  • Ørjan Totland
    • 1
  1. 1.Department of Ecology and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway

Personalised recommendations