Biodiversity and Conservation

, Volume 23, Issue 4, pp 909–926 | Cite as

Priority setting by sites and by species using rarity, richness and phylogenetic diversity: the case of neotropical glassfrogs (Anura: Centrolenidae)

Original Paper

Abstract

The identification of priority areas and species for conservation is an urgent endeavor in view of environmental changes threatening biological diversity. New macroecological tools that take advantage of the rapid accumulation of distribution and phylogenetic data have been developed recently to tackle that challenge. Here we use the novel concept of the diversity and dispersion fields, complemented with phylogenetic information, to identify priorities for the conservation of neotropical glass frogs (Centrolenidae), both from the perspective of sites and of species. Through the novel approach used here, the priority level of species and sites could be determined by combinations of different traits based both on diversity (species richness and phylogenetic diversity) and distribution (geographic rarity and phylogenetic endemism). Patterns of diversity and distribution for Centrolenidae, such as extreme level of restrictedness, high levels of rarity and high segregation among species, were readily revealed by the use of range-diversity plots. Results were in some cases consistent with studies based on traditional analyses, but the inclusion of phylogenetic information added a historical-evolutionary perspective that further enhanced the analyses. We identified priority species (such as Rulyrana susatamai and Nymphargus griffithsi) and sites (such as the Guiana Shield) that harbor the evolutionary history of the group but that had been overlooked in prior studies. We suggest that for priority setting and gap analysis, phylogenetic information should not be treated as a full substitute for traditional measures of diversity but as a complementary tool.

Keywords

Diversity field Neotropics Phylogenetic diversity Protected areas Rarity Glassfrogs 

Resumen

La identificación de áreas y especies prioritarias para la conservación es una labor urgente en vista de los cambios ambientales que amenazan la diversidad biológica. Para enfrentar dichos retos, recientemente han sido desarrolladas nuevas herramientas macroecológicas que toman ventaja de la rápida acumulación de filogenias y de datos de distribución. En este trabajo usamos el nuevo concepto de campos de diversidad y dispersión, complementados con información filogenética para identificar las prioridades de conservación de las ranas de cristal (Centrolenidae) desde la perspectiva de sitios y de especies. Por medio de esta nueva aproximación, las especies y sitios prioritarios fueron determinados por la combinación de diferentes características, basadas tanto en la diversidad (riqueza de especies y diversidad filogenética) como en la distribución (rareza geográfica y endemismo filogenético). Los patrones de diversidad y distribución para Centrolenidae, tales como su alto nivel de restricción, altos niveles de rareza y alta segregación entre especies fueron rápidamente revelados al usar los gráficos de diversidad y área de distribución. En algunos casos, los resultados fueron consistentes con los estudios basados en análisis tradicionales, pero la inclusión de información filogenética vinculó una perspectiva histórico-evolutiva que fortaleció estos análisis. Además, identificamos especies prioritarias (como Rulyrana susatamai y Nymphargus griffithsi) y sitios prioritarios (como el escudo guayanés) que albergan la historia evolutiva del grupo pero que han sido subestimados en estudios pasados. Sugerimos entonces, que para la determinación de prioridades y vacíos, la información filogenética no debe ser tratada como un substituto absoluto de las medidas tradicionales de diversidad sino como una herramienta complementaria.

Palabras Clave

Campo de diversidad Neotrópico Diversidad filogenética Áreas protegidas Rareza Ranas de cristal 

Notes

Acknowledgments

A. M. Mendoza was supported by a scholarship from Consejo Nacional de Ciencia y Tecnología (CONACyT, Mexico), through Posgrado de Ciencias Biológicas of the National Autonomous University of Mexico (UNAM). We thank Alexander Pyron for kindly providing his phylogenetic tree of the Centrolenidae. Ella Vázquez-Domínguez, Enrique Martínez-Meyer, Luis Erasmo Letelier, Victor Arroyo, Guillermo Ibarra and several anonymous reviewers provided useful comments to previous versions of the manuscript. Samanea Foundation support in the construction of conceptual framework of this research.

Supplementary material

10531_2014_642_MOESM1_ESM.docx (20 kb)
Supplementary material 1 (DOCX 20 kb)

References

  1. Arita HT, Christen A, Rodríguez P, Soberón J (2008) Species diversity and distribution in presence–absence matrices: mathematical relationships and biological implications. Am Nat 112:519–532CrossRefGoogle Scholar
  2. Arita HT, Christen A, Rodríguez P, Soberón J (2012) The presence–absence matrix reloaded: the use and interpretation of range-diversity plots. Global Ecol Biogeogr 21:282–292CrossRefGoogle Scholar
  3. Brooks TM, Bakarr MI, Boucher T, Da Fonseca GAB, Hilton-Taylor C, Hoekstra JM, Moritz T, Olivier S, Parrish J, Pressey RL, Rodrigues ASL, Sechrest W, Stattersfield A, Strahm W, Stuart SN (2004) Coverage provided by the global protected-area system: is it enough? Bioscience 54:1081–1091CrossRefGoogle Scholar
  4. Buchanan GM, Donald PF, Butchart SHM (2011) Identifying priority areas for conservation: a global assessment for forest-dependent birds. PLoS ONE 6:e29080PubMedCentralPubMedCrossRefGoogle Scholar
  5. Cadotte MW, Cavender-Bares J, Tilman D, Oakley TH (2009) Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PLoS One 4(5):e5695Google Scholar
  6. Castroviejo-Fisher S, Vila C, Ayarzaguena J, Blanc M, Ernst R (2011) Species diversity of Hyalinobatrachium glassfrogs (Amphibia: Centrolenidae) from the Guiana shield, with the description of two new species. Zootaxa 3132:1–55Google Scholar
  7. Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW (2009) The merging of community ecology and phylogenetic biology. Ecol Lett 12:693–715PubMedCrossRefGoogle Scholar
  8. Collen B, Turvey ST, Waterman C, Meredith HMR, Kuhn TS, Baillie JEM, Issac NJB (2011) Investing in evolutionary history: implementing a phylogenetic approach for mammal conservation. Phil Trans R Soc B 366:2611–2622PubMedCentralPubMedCrossRefGoogle Scholar
  9. Deguise IE, Kerr JT (2006) Protected areas and prospects for endangered species conservation in Canada. Conserv Biol 20:48–55PubMedCrossRefGoogle Scholar
  10. Duellman WE (1988) Patterns of species-diversity in anuran amphibians in the American tropics. Ann Mo Bot Gard 75:79–104CrossRefGoogle Scholar
  11. Duellman WE (1999) Patterns of distribution of amphibians: a global perspective. Johns Hopkins, BaltimoreGoogle Scholar
  12. Ervin J, Sechran N, Dinu A, Gidda S, Vergeichik M, Mee J (2010) Protected areas for the twenty-first century: lessons from UNDP/GEF’s portfolio. United Nations Development Programme and Convention on Biological DiversityGoogle Scholar
  13. ESRI (2007) ArcGIS, version 9.3., 9.3 edn, Environmental Systems Research Institute (ESRI), RedlandsGoogle Scholar
  14. Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10CrossRefGoogle Scholar
  15. Fandiño M, Ferreira P (1998) Colombia biodiversidad siglo XXI: propuesta técnica para la formulación de un plan de acción nacional en biodiversidad. Instituto de de Investigación de Recursos Biológicos Alexander von Humboldt, BogotáGoogle Scholar
  16. Fjeldsa J, Burgess ND, Blyth S, de Klerk HM (2004) Where are the major gaps in the reserve network for Africa’s mammals? Oryx 38:17–25CrossRefGoogle Scholar
  17. Fleishman E, Murphy DD, Brussard PE (2000) A new method for selection of umbrella species for conservation planning. Ecol Appl 10:569–579CrossRefGoogle Scholar
  18. Funk SM, Fa JE (2010) Ecoregion prioritization suggests an armoury not a silver bullet for conservation planning. PLoS ONE 5:e8923PubMedCentralPubMedCrossRefGoogle Scholar
  19. Gaston KJ, Charman K, Jackson SF, Armsworth PR, Bonn A, Briers RA, Callaghan CSQ, Catchpole R, Hopkins J, Kunin WE, Latham J, Opdam P, Stoneman R, Stroud DA, Tratt R (2006) The ecological effectiveness of protected areas: the United Kingdom. Biol Conserv 132:76–87CrossRefGoogle Scholar
  20. Gaston KJ, Chown SL, Evans KL (2008a) Ecogeographical rules: elements of a synthesis. J Biogeogr 35:483–500CrossRefGoogle Scholar
  21. Gaston KJ, Jackson SE, Cantu-Salazar L, Cruz-Pinon G (2008b) The ecological performance of protected areas. Annu Rev Ecol Evol Syst 39:93–113CrossRefGoogle Scholar
  22. Grant T, Volívar-G W, Castro F (1998) The advertisement call of Centrolene geckoideum. J Herpetol 32:452–455CrossRefGoogle Scholar
  23. Graves GR, Rahbek C (2005) Source pool geometry and the assembly of continental avifaunas. Proc Natl Acad Sci USA 102:7871–7876PubMedCentralPubMedCrossRefGoogle Scholar
  24. Gruber B, Evans D, Henle K, Bauch B, Schmeller D, Dziock F, Henry PY, Lengyel S, Margules C, Dormann C (2012) Mind the gap!—how well does Natura 2,000 cover species of European interest? Nat Conserv 3:45–62CrossRefGoogle Scholar
  25. Guayasamin JM, Castroviejo-Fisher S, Ayarzaguena J, Trueb L, Vila C (2008) Phylogenetic relationships of glassfrogs (Centrolenidae) based on mitochondrial and nuclear genes. Mol Phylogen Evol 48:574–595CrossRefGoogle Scholar
  26. Guayasamin JM, Castroviejo-Fisher S, Trueb L, Ayarzaguena J, Rada M, Vila C (2009) Phylogenetic systematics of Glassfrogs (Amphibia: Centrolenidae) and their sister taxon Allophryne ruthveni. Zootaxa 2100:1–97Google Scholar
  27. Gutiérrez-C P (2005) Cochranella susatamai (Susatama’s glass frog). Herpetological Review 36:73Google Scholar
  28. Gutierrez-C PD, Rivera-Correa M (2007) Cochranella punctulata Ruiz-Carranza & Lynch, 1995—new record from the department of Antioquia (Colombia), with comments on the conservation status. Herpetozoa 20:75–77Google Scholar
  29. Hof C, Araujo MB, Jetz W, Rahbek C (2011) Additive threats from pathogens, climate and land-use change for global amphibian diversity. Nature 480:516–519PubMedGoogle Scholar
  30. Hutter C, Guayasamin JM (2012) A new cryptic species of glassfrog (Centrolenidae: nymphargus) from Reserva Las Gralarias, Ecuador. Zootaxa 3257:1–21Google Scholar
  31. Hutter CR, Guayasamin JM, Wiens JJ (2013) Explaining Andean megadiversity: the evolutionary and ecological causes of glassfrog elevational richness patterns. Ecol Lett 16:1135–1144PubMedCrossRefGoogle Scholar
  32. Isaac NJB, Redding DW, Meredith HM, Safi K (2012) Phylogenetically-informed priorities for Amphibian conservation. PLoS ONE 7:e43912PubMedCentralPubMedCrossRefGoogle Scholar
  33. IUCN (2004) Global amphibian assessment. http://www.iucnredlist.org/initiatives/amphibians/. Accessed 2012
  34. IUCN (2010) IUCN Red list of threatened species, version 2010.4. www.iucnredlist.org. 2012
  35. IUCN/UNEP (2010) The world database on protected areas (WDPA). www.protectedplanet.net
  36. Jackson SF, Evans KL, Gaston KJ (2009) Statutory protected areas and avian species richness in Britain. Biodivers Conserv 18:2143–2151CrossRefGoogle Scholar
  37. Kok PJR, Castroviejo-Fisher S (2008) Glassfrogs (Anura: Centrolenidae) of Kaieteur National Park, Guyana, with notes on the distribution and taxonomy of some species of the family in the Guiana Shield. Zootaxa 1680:25–53Google Scholar
  38. Laffan SW, Lubarsky E, Rosauer DF (2010) Biodiverse, a tool for the spatial analysis of biological and related diversity. Ecography 33:643–647CrossRefGoogle Scholar
  39. Loyola RD, Kubota U, da Fonseca GA, Lewinsohn TM (2009) Key neotropical ecoregions for conservation of terrestrial vertebrates. Biodivers Conserv 18:2017–2031CrossRefGoogle Scholar
  40. Luck GW (2007) A review of the relationships between human population density and biodiversity. Biol Rev 82:607–645PubMedCrossRefGoogle Scholar
  41. Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253PubMedCrossRefGoogle Scholar
  42. Margules CR, Pressey RL, Williams PH (2002) Representing biodiversity: data and procedures for identifying priority areas for conservation. J Biosci (Bangalore) 27:309–326CrossRefGoogle Scholar
  43. May RM (1994) Conceptual aspects of the quantification of the extent of biological diversity. Philos Trans R Soc Lond B Biol Sci 345:13–20PubMedCrossRefGoogle Scholar
  44. Morlon H, Schwilk DW, Bryant JA, Marquet PA, Rebelo AG, Tauss C, Bohannan BJM, Green JL (2011) Spatial patterns of phylogenetic diversity. Ecol Lett 14:141–149PubMedCentralPubMedCrossRefGoogle Scholar
  45. Mouquet N, Devictor V, Meynard CN, Munoz F, Bersier L-F, Chave J, Couteron P, Dalecky A, Fontaine C, Gravel D, Hardy OJ, Jabot F, Lavergne S, Leibold M, Mouillot D, Münkemüller T, Pavoine S, Prinzing A, Rodrigues ASL, Rohr RP, Thébault E, Thuiller W (2012) Ecophylogenetics: advances and perspectives. Biol Rev 87:769–785PubMedCrossRefGoogle Scholar
  46. Myers N, Mittermeier RA, Mittermeier GC, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858PubMedCrossRefGoogle Scholar
  47. Possingham H, Wilson K, Andelman S, Vynne C (2006) Protected areas: goals, limitations, and design. In: Groom M, Meffe G, Carroll C (eds) Principles of conservation biology. Sinauer, Sunderland, pp 509–533Google Scholar
  48. Pressey RL (1994) Ad hoc reservations—forward or backward steps in developing representative reserve systems. Conserv Biol 8:662–668CrossRefGoogle Scholar
  49. Purvis A, Agapow PM, Gittleman JL, Mace GM (2000) Nonrandom extinction and the loss of evolutionary history. Science 288:328–330PubMedCrossRefGoogle Scholar
  50. Pyron RA, Wiens JJ (2011) A large-scale phylogeny of Amphibia including over 2,800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol Phylogen Evol 61:543–583CrossRefGoogle Scholar
  51. Ricketts TH, Dinerstein E, Boucher T, Brooks TM, Butchart SH, Hoffmann M, Lamoreux JF, Morrison J, Parr M, Pilgrim JD, Rodrigues ASL, Sechrest W, Wallace GE, Berlin K, Bielby J, Burgess ND, Church DR, Cox N, Knox D, Loucks C, Luck GW, Master LL, Moore R, Naidoo R, Rdgely R, Schatz GE, Shite G, Strand H, Wettenger W, Wikramanayake E (2005) Pinpointing and preventing imminent extinctions. Proc Natl Acad Sci USA 102:18497–18501Google Scholar
  52. Rodrigues ASL, Akcakaya HR, Andelman SJ, Bakarr MI, Boitani L, Brooks TM, Chanson JS, Fishpool LDC, Da Fonseca GAB, Gaston KJ, Hoffmann M, Marquet PA, Pilgrim JD, Pressey RL, Schipper J, Sechrest W, Stuart SN, Underhill LG, Waller RW, Watts MEJ, Yan X (2004a) Global gap analysis: priority regions for expanding the global protected-area network. Bioscience 54:1092–1100CrossRefGoogle Scholar
  53. Rodrigues ASL, Andelman SJ, Bakarr MI, Boitani L, Brooks TM, Cowling RM, Fishpool LDC, da Fonseca GAB, Gaston KJ, Hoffmann M, Long JS, Marquet PA, Pilgrim JD, Pressey RL, Schipper J, Sechrest W, Stuart SN, Underhill LG, Waller RW, Watts MEJ, Yan X (2004b) Effectiveness of the global protected area network in representing species diversity. Nature 428:640–643PubMedCrossRefGoogle Scholar
  54. Rosauer D, Laffan SW, Crisp MD, Donnellan SC, Cook LG (2009) Phylogenetic endemism: a new approach for identifying geographical concentrations of evolutionary history. Mol Ecol 18:4061–4072PubMedCrossRefGoogle Scholar
  55. Ruiz-Carranza P, Lynch JD (1991) Ranas Centrolenidae de Colombia I: propuesta de una nueva clasificación genérica. Lozania 57:1–30Google Scholar
  56. Ruiz-Carranza P, Lynch J (1997) Ranas Centrolenidae de Colombia X: los centrolénidos de un perfil del flanco oriental de la Cordillera Central en el Departamento de Caldas. Revista Acad Colomb Cienc 21:541–553Google Scholar
  57. Safi K, Pettorelli N (2010) Phylogenetic, spatial and environmental components of extinction risk in carnivores. Global Ecol Biogeogr 19:352–362CrossRefGoogle Scholar
  58. Smith BT, Bryson RW, Houston DD, Klicka J (2012) An asymmetry in niche conservatism contributes to the latitudinal species diversity gradient in New World vertebrates. Ecol Lett 15:1318–1325PubMedCrossRefGoogle Scholar
  59. Villalobos F, Arita HT (2010) The diversity field of New World leaf-nosed bats (Phyllostomidae). Global Ecol Biogeogr 19:200–211CrossRefGoogle Scholar
  60. Villalobos F, Lira-Noriega A, Soberon J, Arita HT (2013) Range-diversity plots for conservation assessments: using richness and rarity in priority setting. Biol Conserv 158:313–320CrossRefGoogle Scholar
  61. Wiens JJ, Graham CH, Moen DS, Smith SA, Reeder TW (2006) Evolutionary and ecological causes of the latitudinal diversity gradient in Hylid frogs: treefrog trees unearth the roots of high tropical diversity. Am Nat 168:579–596PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Laboratorio de Macroecología, Centro de Investigaciones en EcosistemasUniversidad Nacional Autónoma de MéxicoMoreliaMexico

Personalised recommendations