Skip to main content

Advertisement

Log in

A phylogenetically-informed trait-based analysis of range change in the vascular plant flora of Britain

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Species distributions are changing, and knowing whether certain character traits predispose species to decline or increase during times of environmental change can shed light on the main drivers of distribution change. Here we conduct a trait-based analysis of range change in the flora of Britain since the 1930s using some of the best plant distribution and trait data available in Europe. We use phylogenetically-informed models based on a recently published, dated, species level plant phylogeny. Traits associated with habitat specialism and competitive ability were related to range change, with more competitive habitat generalists faring better than habitat specialists. We attribute this result to the greater ability of generalists to adapt to environmental perturbation, but also to the negative impacts of agricultural intensification on the flora of Britain, in particular the loss of open, dry habitats. We discovered spatial variation in the main drivers of plant range change and find support for previous evidence that agricultural intensification has been a major driver of distribution change in the flora of Britain over the past 70 years, particularly in southern England.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Angert AL, Crozier LG, Rissler LJ, Gilman SE, Tewksbury JJ, Chunco AJ (2011) Do species’ traits predict recent shifts at expanding range edges? Ecol Lett 14:677–689

    Article  PubMed  Google Scholar 

  • APG III (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121

    Article  Google Scholar 

  • Barton KA (2010) MuMIn: R package for model selection and multi-model inference, version 1.9.8

  • Bennie J, Hill MO, Baxter R, Huntley B (2006) Influence of slope and aspect on long-term vegetation change in British chalk grasslands. J Ecol 94:355–368

    Article  Google Scholar 

  • Braithwaite ME, Ellis RW, Preston CD (2006) Change in the British flora 1987–2004. Bot Soc Br Isles, London

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference, 2nd edn. Springer Science, New York

  • Cardillo M, Mace GM, Jones KE, Bielby J, Bininda-Emonds ORP, Sechrest W, Orme CDL, Purvis A (2005) Multiple causes of high extinction risk in large mammal species. Science 309:1239–1241

    Article  CAS  PubMed  Google Scholar 

  • Chen I-C, Hill JK, Ohlemuller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026

    Article  CAS  PubMed  Google Scholar 

  • Devictor V, Julliard R, Couvet D, Jiguet F (2008) Birds are tracking climate warming, but not fast enough. Proc R Soc B Biol Sci 275:2743–2748

    Article  Google Scholar 

  • Durka W, Michalski SG (2012) Daphne: a dated phylogeny of a large European flora for phylogenetically informed ecological analyses. Ecology 93:2297

    Article  Google Scholar 

  • Evans PA, Evans IM, Rothero GP (2002) Flora of Assynt. Privately published

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Article  Google Scholar 

  • Fisher DO, Owens IPF (2004) The comparative method in conservation biology. Trends Ecol Evol 19:391–398

    Article  PubMed  Google Scholar 

  • Franco AMA, Hill JK, Kitschke C, Collingham YC, Roy DB, Fox R, Huntley B, Thomas CD (2006) Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Glob Chang Biol 12:1545–1553

    Article  Google Scholar 

  • Freckleton RP, Harvey PH, Pagel M (2002) Phylogenetic analysis and comparative data: a test and review of evidence. Am Nat 160:712–726

    Article  CAS  PubMed  Google Scholar 

  • Fritz SA, Bininda-Emonds ORP, Purvis A (2009) Geographical variation in predictors of mammalian extinction risk: big is bad, but only in the tropics. Ecol Lett 12:538–549

    Article  PubMed  Google Scholar 

  • Grime JP (2001) Plant strategies, vegetation processes, and ecosystem properties, 2nd edn. Wiley, West Sussex

  • Godefroid S (2001) Temporal analysis of the Brussels flora as indicator for changing environmental quality. Landsc Urban plan 54:203–224

    Article  Google Scholar 

  • Haines-Young R, Barr CJ, Firbank LG, Furse M, Howard DC, McGowan G, Petit S, Smart SM, Watkins JW (2003) Changing landscapes, habitats and vegetation diversity across Great Britain. J Environ Manag 67:161–174

    Article  Google Scholar 

  • Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford University Press, Oxford

    Google Scholar 

  • Hill MO (2012) Local frequency as a key to interpreting species occurrence data when recording effort is not known. Methods Ecol Evol 3:195–205

    Article  Google Scholar 

  • Hill MO, Preston CD, Roy DB (2004) PLANTATT Attributes of British and Irish plants: status, size, life history, geography and habitats. Centre for Ecology and Hydrology, Huntingdon

    Google Scholar 

  • Hodgdon JG (1989) What is happening to the British flora—an investigation of commonness and rarity. Plants Today 2:26–32

    Google Scholar 

  • Hulme PE (2009) Relative roles of life-form, land use and climate in recent dynamics of alien plant distributions in the British Isles. Weed Res 49:19–28

    Article  Google Scholar 

  • IUCN (2001) IUCN Red List Categories and Criteria—Version 3.1. Gland, Switzerland

  • Jetz W, Wilcove DS, Dobson AP (2007) Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol 5:1211–1219

    Article  CAS  Google Scholar 

  • Koh LP, Sodhi NS, Brook BW (2004) Ecological correlates of extinction proneness in tropical butterflies. Conserv Biol 18:1571–1578

    Article  Google Scholar 

  • Landsberg J, Crowley G (2004) Monitoring rangeland biodiversity: plants as indicators. Aust Ecol 29:59–77

    Article  Google Scholar 

  • Liem ASN, Hendriks A, Kraal H, Loenen M (1985) Effects of de-icing salt on roadside grasses and herbs. Plant Soil 84:299–310

    Article  CAS  Google Scholar 

  • Mace GM, Masundire H, Baillie JEM (2005) Biodiversity. In: Hassan R, Scholes R, Ash N (eds) Millennium ecosystem assessment. Ecosystems and human well-being: Current state and trends. Island Press, Washington, DC, pp 77–122

    Google Scholar 

  • Mace GM, Collen B, Fuller RA, Boakes EH (2010) Population and geographic range dynamics: implications for conservation planning. Philos Trans R Soc Lond B 365:3743–3751

    Article  Google Scholar 

  • McCollin D, Moore L, Sparks T (2000) The flora of a cultural landscape: environmental determinants of change revealed using archival sources. Biol Conserv 92:249–263

    Article  Google Scholar 

  • Menéndez R, Megías AG, Hill JK, Braschler B, Willis SG, Collingham Y, Fox R, Roy DB, Thomas CD (2006) Species richness changes lag behind climate change. Proc R Soc B Biol Sci 273:1465–1470

    Article  Google Scholar 

  • Montoya JM, Raffaelli D (2010) Climate change, biotic interactions and ecosystem services. Philos Trans R Soc Lond B 365:2013–2018

    Article  Google Scholar 

  • Orme CDL (2012) The caper package: comparative analysis of phylogenetics and evolution in R. http://caper.r-forge.r-project.org. Accessed 1 Aug 2013

  • Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884

    Article  CAS  PubMed  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  PubMed  Google Scholar 

  • Pearman DA, Preston CD (2000) A flora of Tiree, Gunna and Coll. Privately published

  • Pearman DA, Preston CD, Rothero GP, Walker KJ (2008) The flora of rum: an Atlantic Island reserve. Privately published

  • Pereira HM, Daily GC, Roughgarden J (2004) A framework for assessing the relative vulnerability of species to land-use change. Ecol Appl 14:730–742

    Article  Google Scholar 

  • Perring FH, Walters SM (eds) (1962) Atlas of the British flora. T. Nelson and Sons, London

    Google Scholar 

  • Pilgrim E, Crawley MJ, Dolphin K (2004) Patterns of rarity in the native British flora. Biol Conserv 120:161–170

    Article  Google Scholar 

  • Pocock MJO, Hartley S, Telfer MG, Preston CD, Kunin WE (2006) Ecological correlates of range structure in rare and scarce British plants. J Ecol 94:581–596

    Article  Google Scholar 

  • Pöyry J, Luoto M, Heikkinen RK, Kuussaari M, Saarinen K (2009) Species traits explain recent range shifts of Finnish butterflies. Glob Chang Biol 15:732–743

    Article  Google Scholar 

  • Prendergast JR, Wood SN, Lawton JH, Eversham BC (1993) Correcting for variation in recording effort in analyses of diversity hotspots. Biodivers Lett 1:39–53

    Article  Google Scholar 

  • Preston CD (2000) Engulfed by suburbia or destroyed by the plough, the ecology of extinction in Middlesex and Cambridgeshire. Watsonia 23:59–81

    Google Scholar 

  • Preston CD, Croft JM (1997) Aquatic plants in Britain and Ireland. Harley Books, Colchester

    Google Scholar 

  • Preston CD, Pearman DA, Dines TD (eds) (2002a) New atlas of the British and Irish flora. Oxford University Press, Oxford

    Google Scholar 

  • Preston CD, Telfer MG, Arnold HR, Carey PD, Cooper JM, Dines TD, Hill MO, Pearman DA, Roy DB, Smart SM (2002b) The changing flora of the UK. DEFRA, Oxford University Press, London

    Google Scholar 

  • Purvis A (2008) Phylogenetic approaches to the study of extinction. Annu Rev Ecol Evol Syst 39:301–319

    Article  Google Scholar 

  • R Development Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    Article  CAS  PubMed  Google Scholar 

  • Sala OE, Chapin FS III, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  CAS  PubMed  Google Scholar 

  • Smart S, Bunce R, Marrs R, Leduc M, Firbank L, Maskell L, Scott W, Thompson K, Walker K (2005) Large-scale changes in the abundance of common higher plant species across Britain between 1978, 1990 and 1998 as a consequence of human activity: tests of hypothesised changes in trait representation. Biol Conserv 124:355–371

    Article  Google Scholar 

  • Stevens CJ, Dise NB, Mountford JO, Gowing DJ (2004) Impact of nitrogen deposition on the species richness of grasslands. Science 303:1876–1879

    Article  CAS  PubMed  Google Scholar 

  • Stoate C, Boatman ND, Borralho RJ, Carvalho CR, de Snoo GR, Eden P (2001) Ecological impacts of arable intensification in Europe. J Environ Manage 63:337–365

    Article  CAS  PubMed  Google Scholar 

  • Suding KN, Collins SL, Gough L, Clark C, Cleland EE, Gross KL, Milchunas DG, Pennings S (2005) Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proc Natl Acad Sci USA 102:4387–4392

    Article  CAS  PubMed  Google Scholar 

  • Tamis W, Vantzelfde M, Vandermeijden R, Groen C, Udodehaes H (2005) Ecological interpretation of changes in the dutch flora in the 20th century. Biol Conserv 125:211–224

    Article  Google Scholar 

  • Telfer MG, Preston CD, Rothery P (2002) A general method for measuring relative change in range size from biological atlas data. Biol Conserv 107:99–109

    Article  Google Scholar 

  • Thomas CD (2010) Climate, climate change and range boundaries. Divers Distrib 16:488–495

    Article  Google Scholar 

  • Thomas CD, Lennon JJ (1999) Birds extend their ranges northwards. Nature 399:213

    Article  CAS  Google Scholar 

  • Travis JMJ (2003) Climate change and habitat destruction: a deadly anthropogenic cocktail. Proc R Soc B Biol Sci 270:467–473

    Article  CAS  Google Scholar 

  • UK National Ecosystem Assessment (2011) In: Watson R, Albon S (eds) The UK National Ecosystem Assessment: synthesis of the key findings. UNEP-WCMC, Cambridge

    Google Scholar 

  • Van Calster H, Vandenberghe R, Ruysen M, Verheyen K, Hermy M, Decocq G (2008) Unexpectedly high 20th century floristic losses in a rural landscape in northern France. J Ecol 96:927–936

    Article  Google Scholar 

  • Van Landuyt W, Vanhecke L, Hoste I, Hendrickx F, Bauwens D (2008) Changes in the distribution area of vascular plants in Flanders (northern Belgium): eutrophication as a major driving force. Biodivers Conserv 17:3045–3060

    Article  Google Scholar 

  • Walker KJ, Preston CD (2006) Ecological predictors of extinction risk in the flora of lowland England, UK. Biodivers Conserv 15:1913–1942

    Article  Google Scholar 

  • Walker KJ, Preston CD, Boon CR (2009) Fifty years of change in an area of intensive agriculture: plant trait responses to habitat modification and conservation, Bedfordshire, England. Biodivers Conserv 18:3597–3613

    Article  Google Scholar 

  • Walther G-R (2010) Community and ecosystem responses to recent climate change. Philos Trans R Soc Lond B 365:2019–2024

    Article  Google Scholar 

  • Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  CAS  PubMed  Google Scholar 

  • Wilson RJ, Gutierrez D, Gutierrez J, Martinez D, Agudo R, Monserrat VJ (2005) Changes to the elevational limits and extent of species ranges associated with climate change. Ecol Lett 8:1138–1146

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We show great appreciation to all the volunteer recorders that collected the plant data, without which this study would not be possible. We are indebted to the Botanical Society of the British Isles and their network of Vice County Recorders who helped co-ordinated recording for the two atlas datasets used here. We thank Tom Oliver, Michael Pocock, Colin Harrower, Louise Barwell, Will Pearse, Steve Freeman and Nick Isaac for their useful comments regarding data analysis. We would also like to thank Mick Crawley for help regarding plant trait data collation. We thank two anonymous reviewers for constructive comments on an earlier version of this manuscript. This work was funded by the Natural Environment Research Council (NERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary D. Powney.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 207 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Powney, G.D., Rapacciuolo, G., Preston, C.D. et al. A phylogenetically-informed trait-based analysis of range change in the vascular plant flora of Britain. Biodivers Conserv 23, 171–185 (2014). https://doi.org/10.1007/s10531-013-0590-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-013-0590-5

Keywords

Navigation