Biodiversity and Conservation

, Volume 23, Issue 1, pp 63–80 | Cite as

Headwater biodiversity among different levels of stream habitat hierarchy

  • Emma GötheEmail author
  • Nikolai Friberg
  • Maria Kahlert
  • Johan Temnerud
  • Leonard Sandin
Original Paper


With the current loss of biodiversity and threats to freshwater ecosystems, it is crucial to identify hot-spots of biodiversity and on which spatial scale they can be resolved. Conservation and management of these important ecosystems needs insight into whether most of the regional biodiversity (i.e. γ-diversity) can be found locally (i.e. high α-diversity) or whether it is distributed across the region (i.e. high β-diversity). Biodiversity patterns of benthic macroinvertebrates and diatoms were studied in 30 headwater streams in five Swedish catchments by comparing the relative contribution of α- and β-diversity to γ-diversity between two levels of stream habitat hierarchy (catchment and region level). The relationship between species community structure and local environmental factors was also assessed. Our results show that both α- and β-diversity made a significant contribution to γ-diversity. β-diversity remained relatively constant between the two levels of habitat hierarchy even though local environmental control of the biota decreased from the catchment to the region level. To capture most of headwater γ-diversity, management should therefore target sites that are locally diverse, but at the same time select sites so that β-diversity is maximized. As environmental control of the biota peaked at the catchment level, the conservation of headwater stream diversity is likely to be most effective when management targets environmental conditions across multiple local sites within relatively small catchments.


α-diversity β-diversity Headwater streams Diatoms Macroinvertebrates Conservation management 



Financial support for this research was provided by the Swedish University of Agricultural Sciences, the Swedish Environmental Protection Agency, Knowledge Foundation and Swedish Meteorological and Hydrological Institute (Johan Temnerud), and the Marie Curie Actions of the European Commission (FP7-2010-PEOPLE-IEF) (Leonard Sandin). Sampling of the Lugnån and Danshytteån catchments were funded by the Swedish Environmental Protection Agency (contract no. 261 0803). We thank our fellow collaborators for excellent field- and laboratory work: Dan Evander, Amelie Jarlman, Leif Göthe, Jan-Olov Johansson, Kaloyan Kenov, Anna-Karin Persson, Fredrik Pilström, Frida Svanström, Putte Olsson and Per Westerfelt. We also thank Lars Eriksson who was responsible for the macroinvertebrate taxonomy and Elaine McGoff, Richard K. Johnson and three reviewers for providing useful comments on an earlier version of the manuscript.


  1. Abell R (2002) Conservation biology for the biodiversity crisis: a freshwater follow-up. Conserv Biol 16:1435–1437. doi: 10.1046/j.1523-1739.2002.01532.x CrossRefGoogle Scholar
  2. Abromovitz JN (1996) Imperiled waters, impoverished future: The decline of freshwater ecosystemsGoogle Scholar
  3. Anderson MJ, Crist TO, Chase JM, Vellend M, Inouye BD, Freestone AL, Sanders NJ, Cornell HV, Comita LS, Davies KF, Harrison SP, Kraft NJB, Stegen JC, Swenson NG (2011) Navigating the multiple meanings of b diversity: a roadmap for the practicing ecologist. Ecol Lett 14:19–28. doi: 10.1111/j.1461-0248.2010.01552.x PubMedCrossRefGoogle Scholar
  4. Bengtsson J (2010) Applied (meta) community ecology: diversity and ecosystem services at the intersection of local and regional processes. In: Verhoef HA, Morin PJ (eds) Community ecology: processes, models, and applications. Oxford University Press, New York, pp 115–131Google Scholar
  5. Bishop K, Buffam I, Erlandsson M, Fölster J, Laudon H, Seibert J, Temnerud J (2008) Aqua Incognita: the unknown headwaters. Hydrol Processes 22:1239–1242. doi: 10.1002/Hyp.7049 CrossRefGoogle Scholar
  6. Bohonak AJ, Jenkins DG (2003) Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecol Lett 6:783–796. doi: 10.1046/j.1461-0248.2003.00486.x CrossRefGoogle Scholar
  7. Braukmann U, Biss R (2004) Conceptual study—an improved method to assess acidification in German streams by using benthic macroinvertebrates. Limnologica 34:433–450. doi: 10.1016/S0075-9511(04)80011-2 CrossRefGoogle Scholar
  8. Brown BL, Swan CM (2010) Dendritic network structure constrains metacommunity properties in riverine ecosystems. J Anim Ecol 79:571–580. doi: 10.1111/j.1365-2656.2010.01668.x PubMedCrossRefGoogle Scholar
  9. Buffam I, Laudon H, Temnerud J, Morth CM, Bishop K (2007) Landscape-scale variability of acidity and dissolved organic carbon during spring flood in a boreal stream network. J Geophys Res 112:G01022. doi: 10.1029/2006jg000218 CrossRefGoogle Scholar
  10. Carrara F, Altermatt F, Rodriguez-Iturbe I, Rinaldo A (2012) Dendritic connectivity controls biodiversity patterns in experimental metacommunities. Proc Natl Acad Sci 109:5761–5766. doi: 10.1073/pnas.1119651109 PubMedCrossRefGoogle Scholar
  11. Chao A (1984) Non-parametric estimation of the number of classes in a population. Scand J Stat 11:265–270. doi: 10.2307/4615964 Google Scholar
  12. Chao A, Chiu C, Hsieh TC (2012) Proposing a resolution to debates on diversity partitioning. Ecology 93:2037–2051. doi: 10.1890/11-1817.1 PubMedCrossRefGoogle Scholar
  13. Clarke KR, Ainsworth M (1993) A method of linking multivariate community structure to environmental variables. Mar Ecol Prog Ser 92:205–291CrossRefGoogle Scholar
  14. Clarke A, Mac Nally R, Bond N, Lake PS (2008) Macroinvertebrate diversity in headwater streams: a review. Freshwat Biol 53:1707–1721. doi: 10.1111/j.1365-2427.2008.02041.x CrossRefGoogle Scholar
  15. Clarke A, Mac Nally R, Bond NR, Lake PS (2010) Conserving macroinvertebrate diversity in headwater streams: the importance of knowing the relative contributions of α and β diversity. Divers Distrib 16:725–736. doi: 10.1111/j.1472-4642.2010.00692.x CrossRefGoogle Scholar
  16. Collier KJ (2011) The rapid rise of streams and rivers in conservation assessment. Aquat Conserv: Mar Freshwat Ecosyst 21:397–400. doi: 10.1002/aqc.1196 CrossRefGoogle Scholar
  17. Cottenie K, De Meester L (2004) Metacommunity structure: synergy of biotic interactions as selective agents and dispersal as fuel. Ecology 85:114–119. doi: 10.1890/03-3004 CrossRefGoogle Scholar
  18. Declerck SAJ, Coronel JS, Legendre P, Brendonck L (2011) Scale dependency of processes structuring metacommunities of cladocerans in temporary pools of High-Andes wetlands. Ecography 34:296–305. doi: 10.1111/j.1600-0587.2010.06462.x CrossRefGoogle Scholar
  19. Dudgeon D, Arthington AH, Gessner MO, Kawabata ZI, Knowler DJ, Leveque C, Naiman RJ, Prieur-Richard AH, Soto D, Stiassny MLJ, Sullivan CA (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81:163–182. doi: 10.1017/S1464793105006950 PubMedCrossRefGoogle Scholar
  20. Ellison AM (2010) Partitioning diversity. Ecology 91:1962–1963. doi: 10.1890/09-1692.1 PubMedCrossRefGoogle Scholar
  21. Erős T (2007) Partitioning the diversity of riverine fish: the roles of habitat types and non-native species. Freshwat Biol 52:1400–1415. doi: 10.1111/j.1365-2427.2007.01777.x CrossRefGoogle Scholar
  22. Fernandes CC, Podos J, Lundberg JG (2004) Amazonian ecology: tributaries enhance the diversity of electric fishes. Science 305:1960–1962. doi: 10.1126/science.1101240 PubMedCrossRefGoogle Scholar
  23. Finlay BJ, Tom Fenchel (2004) Cosmopolitan metapopulations of free-living microbial eukaryotes. Protist 155:237–244. doi: 10.1078/143446104774199619 PubMedCrossRefGoogle Scholar
  24. Finlay BJ, Monaghan EB, Maberly SC (2002) Hypothesis: the rate and scale of dispersal of freshwater diatom species is a function of their global abundance. Protist 153:261–273. doi: 10.1078/1434-4610-00103 PubMedCrossRefGoogle Scholar
  25. Finn DS, Bonada N, Múrria C, Hughes JM (2011) Small but mighty: headwaters are vital to stream network biodiversity at two levels of organization. J N Am Benthol Soc 30:963–980. doi: 10.1899/11-012.1 CrossRefGoogle Scholar
  26. Göthe E, Angeler DG, Sandin L (2013) Metacommunity structure in a small boreal stream network. J Anim Ecol 82:449–458. doi: 10.1111/1365-2656.12004 CrossRefGoogle Scholar
  27. Hammer O, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9Google Scholar
  28. Heino J (2013) The importance of metacommunity ecology for environmental assessment research in the freshwater realm. Biol Rev 88:166–178. doi: 10.1111/j.1469-185X.2012.00244.x PubMedCrossRefGoogle Scholar
  29. Heino J, Mykrä H (2008) Control of stream insect assemblages: roles of spatial configuration and local environmental factors. Ecol Entomol 33:614–622. doi: 10.1111/j.1365-2311.2008.01012.x CrossRefGoogle Scholar
  30. Heino J, Bini LM, Karjalainen SM, Mykrä H, Soininen J, Vieira LCG, Diniz-Filho JAF (2010) Geographical patterns of micro-organismal community structure: are diatoms ubiquitously distributed across boreal streams? Oikos 119:129–137. doi: 10.1111/j.1600-0706.2009.17778.x CrossRefGoogle Scholar
  31. Heino J, Grönroos M, Soininen J, Virtanen R, Muotka T (2012) Context dependency and metacommunity structuring in boreal headwater streams. Oikos 121:537–544. doi: 10.1111/j.1600-0706.2011.19715.x CrossRefGoogle Scholar
  32. Heywood VH (1995) Global Biodiversity Assessment. Cambridge University Press, Cambridge, United Nations Environment ProgrammeGoogle Scholar
  33. Hirst H, Chaud F, Delabie C, Jüttner I, Ormerod SJ (2004) Assessing the short-term response of stream diatoms to acidity using inter-basin transplantations and chemical diffusing substrates. Freshwat Biol 49:1072–1088. doi: 10.1111/j.1365-2427.2004.01242.x CrossRefGoogle Scholar
  34. Illies J (1966) Verbreitung der süßwasserfauna Europas. Verh Internat Verein Theor Angew Limnol 16:287–296Google Scholar
  35. IUCN (2007) IUCN Red List of threatened species. International Union for Conservation of Nature and Natural resources, CambridgeGoogle Scholar
  36. Jenkins M (2003) Prospects for biodiversity. Science 302:1175–1177. doi: 10.1126/science.1088666 PubMedCrossRefGoogle Scholar
  37. Jost L (2006) Entropy and diversity. Oikos 113:363–375. doi: 10.1111/j.2006.0030-1299.14714.x CrossRefGoogle Scholar
  38. Jost L (2007) Partitioning diversity into independent alpha and beta components. Ecology 88:2427–2439. doi: 10.1890/06-1736.1 PubMedCrossRefGoogle Scholar
  39. Jost L, DeVries P, Walla T, Greeney H, Chao A, Ricotta C (2010) Partitioning diversity for conservation analyses. Divers Distrib 16:65–76. doi: 10.1111/j.1472-4642.2009.00626.x CrossRefGoogle Scholar
  40. Leibold MA, Norberg J (2004) Biodiversity in metacommunities: plankton as complex adaptive systems? Limnol Oceanogr 49:1278–1289. doi: 10.2307/3597954 CrossRefGoogle Scholar
  41. Leopold LB, Wolman MG, Miller JP (1964) Fluvial processes in geomorphology. W.H Freeman and Co, San FransiscoGoogle Scholar
  42. Lewis BR, Jüttner I, Reynolds B, Ormerod SJ (2007) Comparative assessment of stream acidity using diatoms and macroinvertebrates: implications for river management and conservation. Aquat Conserv: Mar Freshwat Ecosyst 17:502–519. doi: 10.1002/aqc.787 CrossRefGoogle Scholar
  43. Loreau M, Mouquet N (1999) Immigration and the maintenance of local species diversity. Am Nat 154:427–440. doi: 10.1086/303252 PubMedCrossRefGoogle Scholar
  44. Lowe WH, Likens GE (2005) Moving headwater streams to the head of the class. Bioscience 55:196–197. doi:10.1641/0006-3568(2005)055[0196:mhstth];2Google Scholar
  45. Malmqvist B, Rundle S (2002) Threats to the running water ecosystems of the world. Environ Conserv 29:134–153. doi: 10.1017/S0376892902000097 CrossRefGoogle Scholar
  46. Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253. doi: 10.1038/35012251 PubMedCrossRefGoogle Scholar
  47. Meyer JL, Wallace JB (2001) Lost linkages and lotic ecology: rediscovering small streams. In: Press MC, Huntly NJ, Levin S (eds) Ecology: achievement and challenge. Blackwell Science, Oxford, pp 295–317Google Scholar
  48. Meyer JL, Sale MJ, Mulholland PJ, Poff NL (1999) Impacts of climate change on aquatic ecosystem functioning and health. J Amer Water Resour Assoc 35:1373–1386. doi: 10.1111/j.1752-1688.1999.tb04222.x CrossRefGoogle Scholar
  49. Meyer JL, Strayer DL, Wallace JB, Eggert SL, Helfman GS, Leonard NE (2007) The contribution of headwater streams to biodiversity in river networks. J Amer Water Resour Assoc 43:86–103. doi: 10.1111/j.1752-1688.2007.00008.x CrossRefGoogle Scholar
  50. Moss B, Hering D, Green AJ, Aidoud A, Becares E, Beklioglu M, Bennion H, Boix D, Brucet S, Carvalho L, Clement B, Davidson T, Declerck S, Dobson M, van Donk E, Dudley B, Feuchtmayr H, Friberg N, Grenouillet G, Hillebrand H, Hobaek A, Irvine K, Jeppesen E, Johnson R, Jones I, Kernan M, Lauridsen TL, Manca M, Meerhoff M, Olafsson J, Ormerod S, Papastergiadou E, Penning WE, Ptacnik R, Quintana X, Sandin L, Seferlis M, Simpson G, Triga C, Verdonschot P, Verschoor AM, Weyhenmeyer GA (2009) Climate change and the future of freshwater biodiversity in europe: a primer for policy-makers. Freshwater Reviews 2:103–130. doi: 10.1608/frj-2.2.1 Google Scholar
  51. Mykrä H, Heino J, Muotka T (2007) Scale-related patterns in the spatial and environmental components of stream macroinvertebrate assemblage variation. Global Ecol Biogeogr 16:149–159. doi: 10.1111/j.1466-8238.2006.00272.x CrossRefGoogle Scholar
  52. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2011) Vegan: Community ecology package. R package version 2.0-0. Accessed 13 Nov 2011
  53. Palmer MA, Menninger HL, Bernhardt E (2010) River restoration, habitat heterogeneity and biodiversity: a failure of theory or practice? Freshwat Biol 55:205–222CrossRefGoogle Scholar
  54. Pappas JL, Stoermer EF (1996) Quantitative method for determining a representative algal sample count. J Phycol 32:693–696. doi: 10.1111/j.0022-3646.1996.00693.x CrossRefGoogle Scholar
  55. Poff NL (1997) Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. J N Am Benthol Soc 16:391–409. doi: 10.2307/1468026 CrossRefGoogle Scholar
  56. Pulliam HR (1988) Sources, sinks, and population regulation. Am Nat 132:652–661. doi: 10.2307/2461927 CrossRefGoogle Scholar
  57. R Development Core Team (2011) R: A language and environment for statistical computing. R foundation for statistical computing Vienna, Austria ISBN 3-900051-07-0 Accessed 13 Nov 2011
  58. Revenga C, Campbell I, Abell R, de Villiers P, Bryer M (2005) Prospects for monitoring freshwater ecosystems towards the 2010 targets. Philos Trans R Soc Lond B Biol Sci 360:397–413. doi: 10.1098/rstb 2004.1595PubMedCrossRefGoogle Scholar
  59. Ricciardi A, Rasmussen JB (1999) Extinction rates of north American freshwater fauna. Conserv Biol 13:1220–1222. doi: 10.1046/j.1523-1739.1999.98380.x CrossRefGoogle Scholar
  60. Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld Mn, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774. doi: 10.1126/science.287 5459.1770PubMedCrossRefGoogle Scholar
  61. Sandin L (2003) Benthic invertebrates in Swedish streams: community structure, taxon richness, and environmental relations. Ecography 26:269–282. doi: 10.1034/j.1600-0587.2003.03380.x CrossRefGoogle Scholar
  62. Sandin L, Johnson RK (2000) Ecoregions and benthic macroinvertebrate assemblages of Swedish streams. J N Am Benthol Soc 19:462–474. doi: 10.2307/1468107 CrossRefGoogle Scholar
  63. Sandin L, Johnson RK (2004) Local, landscape and regional factors structuring benthic macroinvertebrate assemblages in Swedish streams. Landscape Ecol 19:501–514. doi: 10.1023/B:LAND.0000036116.44231.1c CrossRefGoogle Scholar
  64. Schmera D, Podani J (2013) Components of beta diversity in hierarchical sampling designs: a new approach. Ecol Indic 26:126–136. doi: 10.1016/j.ecolind.2012.10.029 CrossRefGoogle Scholar
  65. Smith EP, van Belle G (1984) Nonparametric estimation of species richness. Biometrics 40:119–129. doi: 10.2307/2530750 CrossRefGoogle Scholar
  66. Soininen J (2007) Environmental and spatial control of freshwater diatoms - a review. Diatom Res 22:473–490. doi: 10.1080/0269249x.2007.9705724 CrossRefGoogle Scholar
  67. Stendera SES, Johnson RK (2005) Additive partitioning of aquatic invertebrate species diversity across multiple spatial scales. Freshwat Biol 50:1360–1375. doi: 10.1111/j.1365-2427.2005.01403.x CrossRefGoogle Scholar
  68. Strayer DL, Dudgeon D (2010) Freshwater biodiversity conservation: recent progress and future challenges. J N Am Benthol Soc 29:344–358. doi: 10.1899/08-171.1 CrossRefGoogle Scholar
  69. Temnerud J, Bishop K (2005) Spatial variation of streamwater chemistry in two Swedish boreal catchments: implications for environmental assessment. Environ Sci Technol 39:1463–1469. doi: 10.1021/es040045q PubMedCrossRefGoogle Scholar
  70. Tuomisto H (2010a) A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography 33:2–22. doi: 10.1111/j.1600-0587.2009.05880.x CrossRefGoogle Scholar
  71. Tuomisto H (2010b) A diversity of beta diversities: straightening up a concept gone awry. Part 2. Quantifying beta diversity and related phenomena. Ecography 33:23–45. doi: 10.1111/j.1600-0587.2009.06148.x CrossRefGoogle Scholar
  72. Verleyen E, Vyverman W, Sterken M, Hodgson DA, De Wever A, Juggins S, Van de Vijver B, Jones VJ, Vanormelingen P, Roberts D, Flower R, Kilroy C, Souffreau C, Sabbe K (2009) The importance of dispersal related and local factors in shaping the taxonomic structure of diatom metacommunities. Oikos 118:1239–1249. doi: 10.1111/j.1600-0706.2009.17575.x CrossRefGoogle Scholar
  73. Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn SE, Sullivan CA, Liermann CR, Davies PM (2010) Global threats to human water security and river biodiversity. Nature 467:555–561. doi: 10.1038/nature09440 PubMedCrossRefGoogle Scholar
  74. Vyverman W, Verleyen E, Sabbe K, Vanhoutte K, Sterken M, Hodgson DA, Mann DG, Juggins S, Vijver B, Jones V, Flower R, Roberts D, Chepurnov VA, Kilroy C, Vanormelingen P, Wever AD (2007) Historical processes constrain patterns in global diatom diversity. Ecology 88:1924–1931. doi: 10.1890/06-1564.1 PubMedCrossRefGoogle Scholar
  75. Whittaker RH (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecol Monogr 30:279–338. doi: 10.2307/1943563 CrossRefGoogle Scholar
  76. Whittaker RH (1972) Evolution and measurement of species diversity. Taxon 21:213–251. doi: 10.2307/1218190 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Emma Göthe
    • 1
    Email author
  • Nikolai Friberg
    • 1
  • Maria Kahlert
    • 2
  • Johan Temnerud
    • 2
    • 3
  • Leonard Sandin
    • 1
  1. 1.Department of BioscienceAarhus UniversitySilkeborgDenmark
  2. 2.Department of Aquatic Sciences and AssessmentSwedish University of Agricultural SciencesUppsalaSweden
  3. 3.Hydrological Unit, Research DepartmentSwedish Meteorological and Hydrological Institute (SMHI)NorrköpingSweden

Personalised recommendations