Biodiversity and Conservation

, Volume 22, Issue 12, pp 2907–2918 | Cite as

How many species of Cyanobacteria are there? Using a discovery curve to predict the species number

  • João Carlos Nabout
  • Barbbara da Silva Rocha
  • Fernanda Melo Carneiro
  • Célia Leite Sant’Anna
Original Paper


Although the number of biodiversity studies is increasing, the total number of species in different taxonomic groups remains uncertain. Estimates of the number of described species of Cyanobacteria range from 2,000 to 8,000. However, no studies have used discovery curves to estimate this number. The aim of this study was to understand the status of cyanobacterial biodiversity on a global scale and to estimate the number of still-unknown species, using a discovery curve. The species and year of descriptions of Cyanobacteria were obtained from the CyanoDB database. The cumulative number of species per year was adjusted using three asymptotic models (Logistic, Gompertz, and Extreme Value). These nonlinear models were compared through the Akaike information criterion. There are currently 2,698 described species of Cyanobacteria, and the best model (Gompertz) estimated that this group must contain 6,280 species. These three models proved to be quite idiosyncratic (Extreme value: 3,166 species and Logistic: 3,769 species), and therefore the choice of model is fundamental in studies using a discovery curve. Many Cyanobacteria species remain to be described, demonstrating the importance of increasing investment in research on the biodiversity of Cyanobacteria, in particular in understudied geographic regions.


Cumulative species curve Biodiversity Asymptote models 



BSR received a scholarship from CNPq (ATP-B). Our work on phycology has been continuously supported by different grants from CNPp (process 563834/2010-2), CAPES, FAPEG (011/2012) and FAPESP.


  1. Adamowicz SJ, Purvis A (2005) How many branchiopod crustacean species are there? Quantifying the components of underestimation. Glob Ecol Biogeogr 14:455–468CrossRefGoogle Scholar
  2. Appeltans W, Vanhoorne B, Decock W et al (2012) The magnitude of global marine species diversity. Curr Biol 22:2189–2202PubMedCrossRefGoogle Scholar
  3. Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47PubMedCrossRefGoogle Scholar
  4. Aravind N, Tambat B, Ravikanth G, Ganeshaiah K, Uma Shaanker R (2007) Patterns of species discovery in the Western Ghats, a megadiversity hot spot in India. J Biosci 32:781–790PubMedCrossRefGoogle Scholar
  5. Baselga A, Hortal J, Jiménez-Valverde A, Gómez JF, Lobo JM (2007) Which leaf beetles have not yet been described? Determinants of the description of Western Palaearctic Aphthona species (Coleoptera: Chrysomelidae). Biodivers Conserv 16:1409–1421CrossRefGoogle Scholar
  6. Bebber DP, Marriot FHC, Gaston KJ, Harris SA, Scotland RW (2007) Predicting unknown species numbers using discovery curves. Proc R Soc B 274:1651–1658PubMedCrossRefGoogle Scholar
  7. Bini LM, Diniz-Filho JAF, Rangel T, Bastos RP, Pinto MP (2006) Challenging Wallacean and Linnean shortfalls: knowledge gradients and conservation planning in a biodiversity hotspot. Divers Distrib 12:475–482CrossRefGoogle Scholar
  8. Box GEP (1979) Some problems of statistics and everyday life. JASA 74:1–4Google Scholar
  9. Cabrero-Sañudo FJ, Lobo JM (2003) Estimating the number of species not yet described and their characteristics: the case of Western Palaeartic dung beetle species (Coleoptera, Scarabaeoidea). Biodivers Conserv 12:147–166CrossRefGoogle Scholar
  10. Caliman A, Pires AF, Esteves FA, Bozelli RL, Farjalla VF (2010) The prominence of and biases in biodiversity and ecosystem functioning research. Biodivers Conserv 19:651–664CrossRefGoogle Scholar
  11. Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67PubMedCrossRefGoogle Scholar
  12. Carneiro FM, Nabout JC, Bini LM (2008) Trends in the scientific literature on phytoplankton. Limnology 9:153–158CrossRefGoogle Scholar
  13. Castenholz RW, Phylum BX (2001) Cyanobacteria. In: Boone DR, Castenholz RW (eds) Bergey’s Manual of Systematic Bacteriology: The Archaea and the Deeply Branching and Phototropic bacteria, 2nd edn. Springer, New York, pp 473–600CrossRefGoogle Scholar
  14. Costello MJ, Wilson SP (2011) Predicting the number of known and unknown species in European seas using rates of description. Global Ecol Biogeogr 20:319–330CrossRefGoogle Scholar
  15. Costello MJ, Emblow CS, Picton BE (1996) Long term trends in the discovery of marine species new to science which occur in Britain and Ireland. J Mar Biol Assoc UK 76:255–257CrossRefGoogle Scholar
  16. Costello MJ, Wilson S, Houlding B (2012) Predicting total global species richness using rates of species description and estimates of taxonomic effort. Syst Biol 61:871–883PubMedCrossRefGoogle Scholar
  17. Costello MJ, May RM, Stork NE (2013a) Can we name Earth’s species before they go extinct? Science 339:413–416PubMedCrossRefGoogle Scholar
  18. Costello MJ, Wilson S, Houlding B (2013b) More Taxonomists Describing Significantly Fewer Species per Unit Effort May Indicate That Most Species Have Been Discovered. Syst Biol first published online April 10, doi: 10.1093/sysbio/syt024
  19. De Clerck O, Guiry MD, Leliaert F, Samyn Y, Verbruggen H (2013) Algal taxonomy: A road to nowhere? J Phycol 49:215–225CrossRefGoogle Scholar
  20. Diamond JM (1985) How many unknown species are yet to be discovered? Nature 315:538–539CrossRefGoogle Scholar
  21. Diniz-Filho JAF, Bastos RP, Rangel TFLVB, Bini LM, Carvalho P, Silva RJ (2005) Macroecological correlates and spatial patterns of anuran description dates in the Brazilian Cerrado. Glob Ecol Biogeogr 14:469–477CrossRefGoogle Scholar
  22. Diniz-Filho JAF, Bini LM, Rangel TFLVB, Loyola RD, Hof C, Nogués-Bravo D, Araújo MB (2009) Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography 32:897–906CrossRefGoogle Scholar
  23. Ferro VG, Diniz IR (2008) Biological attributes affect the data of description of tiger moths (Arctiidae) in the Brazilian Cerrado. Divers Distrib 14:472–482CrossRefGoogle Scholar
  24. Fierer N, Lennon JT (2011) The generation and maintenance of diversity in microbial communities. Am J Bot 98:439–448PubMedCrossRefGoogle Scholar
  25. Frank JH, Curtis GA (1979) Trend lines and the number of species of Staphylinidae. J Coleopts Bull 33:133–149Google Scholar
  26. Gaston KJ (1991) Body size and probability of description: the beetle fauna of Britain. Ecol Entomol 16:505–508CrossRefGoogle Scholar
  27. Gaston KJ, Scoble MJ, Crook A (1995) Patterns in species description: a case study using the Geometridae (Lepidoptera). Biol J Linn Soc 55:225–237CrossRefGoogle Scholar
  28. Gower DJ, Bhatta G, Giri V, Oommen OV, Ravichandran MS, Wilkinson M (2004) Biodiversity in the Western Ghats: The discovery of new species of caecilian amphibians. Curr Sci 87:739–740Google Scholar
  29. Graham LE, Graham JM, Wilcox LW (2009) Algae, 2nd edn. Pearson Benjamin Cummings, San FranciscoGoogle Scholar
  30. Guil N, Cabrero-Sañudo FJ (2007) Analysis of the species description process for a little known invertebrate group: the limnoterrestrial tardigrades (Bilateria, Tardigrada). Biodivers Conserv 16:1063–1086CrossRefGoogle Scholar
  31. Guiry MD (2012) How many species of algae are there?. J Phycol 48(5):1057–1063CrossRefGoogle Scholar
  32. Heino J (2011) A macroecological perspective of diversity patterns in the freshwater realm. Freshw Biol 56:1703–1722CrossRefGoogle Scholar
  33. Hoffmann L (1996) Geographic distribution of freshwater blue-green algae. Hydrobiologia 336:33–39CrossRefGoogle Scholar
  34. Hong SH, Bunge J, Jeon SO, Epstein SS (2006) Predicting microbial species richness. Proc Nat Acad Sci USA 103(1):117–122PubMedCrossRefGoogle Scholar
  35. Jiménez-Valverde A, Ortuño VM (2007) The historical description process of Iberian endemic ground-beetles (Coleoptera, Carabidae): which species are described first? Acta Oecol 31:13–31CrossRefGoogle Scholar
  36. Johnson JP, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19:101–108PubMedCrossRefGoogle Scholar
  37. Joppa L, Roberts DL, Pimm SL (2011) How many species of flowering plants are there? Proc R Soc B 278(1705):554–559PubMedCrossRefGoogle Scholar
  38. Karnkowska-Ishikawa A, Milanowski R, Triemer RE, Zakryś B (2012) Taxonomic revisions of morphologically similar species from two Euglenoid genera: Euglena (E. granulata and E. velata) and Euglenaria (Eu. anabaena, Eu. caudata and Eu. clavata). J Phycol 48:729–739CrossRefGoogle Scholar
  39. Komárek J (2006) Cyanobacterial taxonomy: current problems and prospects for the integration of traditional and molecular approaches. Algae 21(4):349–375CrossRefGoogle Scholar
  40. Komárek J, Hauer T (2011)—On-line database of cyanobacterial genera. Word-wide electronic publication, Univ. of South Bohemia & Inst. of Botany AS CR. Accessed June 2011
  41. Komárek J, Mareš J (2012) An update to modern taxonomy (2011) of freshwater planktic heterocytous cyanobacteria. Hydrobiologia 698(1):327–351CrossRefGoogle Scholar
  42. Martin JW, Davis GE (2006) Historical trends in crustacean systematics. Crustaceana 79:1347–1368CrossRefGoogle Scholar
  43. Mauchline J, Murano M (1977) World list of the Mysidacea Crustacea. J Tokyo Univ Fish 64:39–88Google Scholar
  44. May R (1988) How many species are there on Earth? Science 241:1441–1449PubMedCrossRefGoogle Scholar
  45. Medellín RA, Soberón J (1999) Predictions of mammal diversity on four land masses. Conserv Biol 13:143–149CrossRefGoogle Scholar
  46. Meier R, Dikow T (2004) The significance of specimen databases from taxonomic revisions for estimating and mapping the global species diversity of invertebrates and repatriating reliable and complete specimen data. Conserv Biol 18(2):478–488CrossRefGoogle Scholar
  47. Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B (2011) How Many Species Are There on Earth and in the Ocean? PLoS Biol 9(8):e1001127PubMedCrossRefGoogle Scholar
  48. Motulsky, HJ, Christopoulos A (2003) Fitting Models to Biological Data Using Linear and Nonlinear Regression. A practical guide to curve fitting. GraphPad Software Inc, San Diego CA. Accessed 15 November 2012
  49. Nabout JC, Siqueira T, Bini LM, Nogueira IS (2009) No evidence for environmental and spatial processes in structuring phytoplankton communities. Acta Oecol 35:720–726CrossRefGoogle Scholar
  50. Nabout JC, Carvalho P, Uehara-Prado M, Borges PP, Machado KB, Haddad KB, Michelan TS, Cunha HF, Soares TN (2012) Trends and biases in global climate change literature. Nat Conserv 10:45–51CrossRefGoogle Scholar
  51. Paxton CGM (1998) A cumulative species description curve for large open water marine animals. J Mar Biol Assoc UK 78:1389–1391CrossRefGoogle Scholar
  52. Pimm S, Raven P, Peterson A, Sekercioglu CH, Ehrlich PR (2006) Human impacts on the rates of recent present and future bird extinctions. Proc Natl Acad Sci USA 103:10941–10946PubMedCrossRefGoogle Scholar
  53. Ratkowsky DA (1990) Handbook of Nonlinear Regression Models. Marcel Dekker, New YorkGoogle Scholar
  54. Reeder DM, Helgen KM, Wilson DE (2007) Global trends and biases in new mammal species discoveries. Occas Pap Mus Texas Tech Univ 269:1–34Google Scholar
  55. Rejmánková E, Komárek J, Komárková J (2004) Cyanobacteria—a neglected component of biodiversity: patterns of species diversity in inland marshes of northern Belize (Central America). Divers Distrib 10:189–199CrossRefGoogle Scholar
  56. Sant’Anna CL, Azevedo MTP, Agujaro LF, Carvalho MC, Carvalho LR, Souza RCR (2006) Manual ilustrado para identificação e contagem de cianobactérias planctônicas de águas continentais brasileiras, 1st edn. Editora Interciência, Rio de JaneiroGoogle Scholar
  57. Sant’Anna CL, Gama JR, Azevedo MTP, Komarek J (2011) New morphospecies of Chamaesiphon (Cyanobacteria) from Atlantic rainforest, Brazil. Fottea 11:1–6Google Scholar
  58. Scheffers BR, Joppa LN, Pimm SL, Laurance WF (2012) What we know and don’t know about Earth’s missing biodiversity. Trends Ecol Evol 27:501–510PubMedCrossRefGoogle Scholar
  59. Schirrmeister BE, de Vos JM, Antonelli A, Bagheri HC (2013) Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event. Proc Natl Acad Sci USA 110:1791–1796PubMedCrossRefGoogle Scholar
  60. Solow AR, Smith WK (2005) On estimating the number of species from the discovery record. P Roy Soc B Biol Sci 272:285–287CrossRefGoogle Scholar
  61. Steyskal GC (1965) Trend curves of the rate of species description in zoology. Science 149:880–882PubMedCrossRefGoogle Scholar
  62. Tjorve E (2003) Shapes and functions of species–area curves: a review of possible models. J Biogeogr 30:827–835CrossRefGoogle Scholar
  63. Trotta-Moreu N, Cabrero-Sañudo FJ (2010) The species description process of North and Central American Geotrupinae (Coleoptera: Scarabaeoidea: Geotrupidae). Rev Mexicana Biodivers 81:299–308Google Scholar
  64. Weisse T (2006) Biodiversity of freshwater microorganisms: achievements, problems and perspectives. Pol J Ecol 54(4):633–652Google Scholar
  65. Wheeler QD (2004) Taxonomic triage and the poverty of phylogeny. Phil Trans R Soc Lond B 359:571–583CrossRefGoogle Scholar
  66. Whittaker RJ, Araújo MB, Paul J, Ladle RJ, Watson JEM, Willis KJ (2005) Conservation biogeography: assessment and prospect. Divers Distrib 11:3–23CrossRefGoogle Scholar
  67. Whitton BA (2012) Ecology of cyanobacteria II: their diversity in space and time. Springer, Dordrecht, 760 pCrossRefGoogle Scholar
  68. Wilkins JS (2002) Summary of 26 species concepts. Accessed October 2012
  69. Williams MR (1995) An extreme-value function model of the species incidence and species–area relations. Ecology 76:2607–2616CrossRefGoogle Scholar
  70. Wilson EO (2000) A Global Biodiversity Map. Science 289:2279Google Scholar
  71. Wilson EO (2003) The encyclopedia of life. Trends Ecol Evol 18:77–80CrossRefGoogle Scholar
  72. Wilson EO (2004) Taxonomy as a fundamental discipline. Phil Trans R Soc Lond B 359:739CrossRefGoogle Scholar
  73. Wilson SP, Costello MJ (2005) Predicting future discoveries of European marine species using non-homogenous renewal process. App Stat 54:897–918Google Scholar
  74. Woolhouse MEJ, Howey R, Gaunt E, Reilly L, Chase-Topping M, Savill NT (2008) Temporal trends in the discovery of human viruses. Proc Biol Sci 275:2111–2115PubMedCrossRefGoogle Scholar
  75. Zapata FA, Robertson DR (2007) How many species of shore fishes are there in the Tropical Eastern Pacific? J Biogeogr 34:38–51CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • João Carlos Nabout
    • 1
  • Barbbara da Silva Rocha
    • 1
  • Fernanda Melo Carneiro
    • 2
  • Célia Leite Sant’Anna
    • 3
  1. 1.Unidade Universitária de Ciências Exatas e Tecnológica (UnUCET)Universidade Estadual de GoiásAnápolisBrazil
  2. 2.Unidade Universitária de IporáUniversidade Estadual de GoiásIporáBrazil
  3. 3.Instituto de BotânicaNúcleo de Pesquisa em FicologiaSão PauloBrazil

Personalised recommendations