Biodiversity and Conservation

, Volume 22, Issue 12, pp 2785–2794 | Cite as

Comparative evaluation of tiger reserves in India

Original Paper


Evidence is vital. Understanding what interventions are effective is critical for the conservation of wild tigers and conservation biology in general. We evaluated the effectiveness of tiger reserves within India, a country with more than half of the estimated wild tiger population, with comparative effectiveness research. Other complex environments, medicine and business use these techniques where cause and effects are often non-linear. These techniques also allowed us to evaluate data from the small sample size often seen in conservation interventions. The opinions of three tiger experts were used to generate a list of seven tiger reserves classified as successful and five reserves as failures. We also used expert opinion to identify any key individuals that garnered widespread support for tiger conservation at any of the identified reserves. Using data from the Indian Census, World Database on Protected Areas, and the Socioeconomic Data and Applications Center, we analyzed the human population around the tiger reserves. We found two surprising insights that have received scant attention in the peer-reviewed literature. First, one can achieve tiger conservation success even within a densely populated human landscape where a high percentage of the population is involved in agriculture. Second, the presence of “conservation champions” can dramatically affect the performance of individual reserves and have positive outcomes for tiger conservation.


Tiger Conservation Evaluation Effectiveness Outcome Biodiversity Champion 


  1. Andersson LM, Bateman TS (2000) Individual environmental initiative: championing natural environmental issues in U.S. Bus Org Acad Manag J 43:548–570CrossRefGoogle Scholar
  2. Arjunan M, Holmes C, Puyravaud J-P, Davidar P (2006) Do developmental initiatives influence local attitudes toward conservation? A case study from the Kalakad-Mundanthurai Tiger Reserve, India. J Environ Manage 79:188–197. doi:10.1016/j.jenvman.2005.06.007 PubMedCrossRefGoogle Scholar
  3. Brinkerhoff RO (2003) An excerpt from the success case method. Berrett–Koehler Publishers, San FranciscoGoogle Scholar
  4. Campbell M, Fitzpatrick R, Haines A et al (2000) Framework for design and evaluation of complex interventions to improve health. Edu Debate 321(7262):694–696Google Scholar
  5. Caro T, Gardner TA, Stoner C et al (2009) Assessing the effectiveness of protected areas: paradoxes call for pluralism in evaluating conservation performance. Divers Distrib 15:178–182. doi:10.1111/j.1472-4642.2008.00522.x CrossRefGoogle Scholar
  6. Ceballos G, Ehrlich PR, Soberón J et al (2005) Global mammal conservation: what must we manage? Science 309(5734):603–607. doi:10.1126/science.1114015 PubMedCrossRefGoogle Scholar
  7. Conway PH, Clancy C (2009) Comparative-effectiveness research—implications of the Federal Coordinating Council’s Report. N Engl J Med 361:328–330PubMedCrossRefGoogle Scholar
  8. Cook CN, Hockings M, Carter R, Bill R (2010) Conservation in the dark? the information used to support management decisions. Front Ecol Environ 8:181–186. doi:10.1890/090020 CrossRefGoogle Scholar
  9. Cook CN, Carter RWB, Fuller RA, Hockings M (2012) Managers consider multiple lines of evidence important for biodiversity management decisions. J Environ Manag 113:341–346CrossRefGoogle Scholar
  10. Craig P, Cooper C, Gunnell D et al (2012) Using natural experiments to evaluate population health interventions: new Medical Research Council guidance. J Epidemiol Community Health 66:1182–1186. doi:10.1136/jech-2011-200375 PubMedCrossRefGoogle Scholar
  11. Damania R, Stringer R, Karanth KU, Stith B (2003) The economics of protecting tiger populations: linking household behavior to poaching and prey depletion. Land Econ 79:198–216CrossRefGoogle Scholar
  12. Davidson AD, Hamilton MJ, Boyer AG et al (2009) Multiple ecological pathways to extinction in mammals. Proc Natl Acad Sci USA 106:10702–10705. doi:10.1073/pnas.0901956106 PubMedCrossRefGoogle Scholar
  13. DeFries R, Karanth KK, Pareeth S (2010) Interactions between protected areas and their surroundings in human-dominated tropical landscapes. Biol Conserv 143:2870–2880. doi:10.1016/j.biocon.2010.02.010 CrossRefGoogle Scholar
  14. DeWitt Hamer PC, Robles SG, Zwinderman AH et al (2012) Impact of intraoperative stimulation brain mapping on glioma surgery outcome: a meta-analysis. J Clin Oncol: Off J Am Soc Clin Oncol 30:2559–2565. doi:10.1200/JCO.2011.38.4818 CrossRefGoogle Scholar
  15. Donlan CJ, Wingfield DK, Crowder LB, Wilcox C (2010) Using expert opinion surveys to rank threats to endangered species: a case study with sea turtles. Conserv Biol: J Soc Conserv Biol 24:1586–1595. doi:10.1111/j.1523-1739.2010.01541.x CrossRefGoogle Scholar
  16. Earl S, Carden F (2002) Learning from complexity: the International Development Research Centre’s experience with outcome mapping. Dev Pract 12:518–524CrossRefGoogle Scholar
  17. Gallagher DR (2009) Advocates for environmental justice: the role of the champion in public participation implementation. Local Environ 14:905–916. doi:10.1080/13549830903244417 CrossRefGoogle Scholar
  18. Geldmann J, Barnes M, Coad L et al. (2013) Effectiveness of terrestrial protected areas in reducing biodiversity and habitat loss. Collab Environ Evidence 1–61Google Scholar
  19. Gilligan MJ, Sergenti EJ (2008) Do UN interventions cause peace? using matching to improve causal inference. Q J Political Sci 3:89–122. doi:10.1561/100.00007051 CrossRefGoogle Scholar
  20. Gubbi S (2012) Patterns and correlates of human–elephant conflict around a south Indian reserve. Biol Conserv 148:88–95. doi:10.1016/j.biocon.2012.01.046 CrossRefGoogle Scholar
  21. Harihar A, Pandav B (2012) Influence of connectivity, wild prey and disturbance on occupancy of tigers in the human-dominated western Terai Arc Landscape. PLoS OnE 7:e40105. doi:10.1371/journal.pone.0040105 PubMedCrossRefGoogle Scholar
  22. Howe C, Milner-Gulland EJ (2012) Evaluating indices of conservation success: a comparative analysis of outcome- and output-based indices. Anim Conser 15. doi:10.1111/j.1469-1795.2011.00516.x
  23. Howell JM (2005) The right stuff: identifying and developing effective champions of innovation. Acad Manag Exec 19:108–119CrossRefGoogle Scholar
  24. Howell JM, Higgins CA (1990) Champions of technological innovation. Adm Sci Q 35:317–341CrossRefGoogle Scholar
  25. Jhala Y, Qureshi Q, Gopal R (2010) Can the abundance of tigers be assessed from their signs? J Appl Ecol 48:14–24. doi:10.1111/j.1365-2664.2010.01901.x CrossRefGoogle Scholar
  26. Johnson A, Vongkhamheng C, Hedemark M, Saithongdam T (2006) Effects of human? carnivore conflict on tiger (Panthera tigris) and prey populations in Lao PDR. Anim Conserv 9:421–430. doi:10.1111/j.1469-1795.2006.00049.x CrossRefGoogle Scholar
  27. Jones JPG (2012) Getting what you pay for: the challenge of measuring success in conservation. Anim Conserv 15:227–228. doi:10.1111/j.1469-1795.2012.00554.x CrossRefGoogle Scholar
  28. Joppa LN, Loarie SR, Pimm SL (2009) On population growth near protected areas. PLoS OnE 4:e4279. doi:10.1371/journal.pone.0004279 PubMedCrossRefGoogle Scholar
  29. Kapos V, Balmford A, Aveling R et al (2008) Calibrating conservation: new tools for measuring success. Conserv Lett 1:155–164. doi:10.1111/j.1755-263X.2008.00025.x CrossRefGoogle Scholar
  30. Kapos V, Balmford A, Aveling R et al (2009) Outcomes, not implementation, predict conservation success. Oryx 43:336. doi:10.1017/S0030605309990275 CrossRefGoogle Scholar
  31. Karanth KU, Nichols JD, Kumar NS et al (2004) Tigers and their prey: predicting carnivore densities from prey abundance. Proc Natl Acad Sci USA 101:4854–4858. doi:10.1073/pnas.0306210101 PubMedCrossRefGoogle Scholar
  32. Karanth KU, Gopalaswamy AM, Kumar NS et al (2011a) Counting India’s wild tigers reliably. Science 332:791PubMedCrossRefGoogle Scholar
  33. Karanth KU, Gopalaswamy AM, Kumar NS et al (2011b) Monitoring carnivore populations at the landscape scale: occupancy modelling of tigers from sign surveys. J Appl Ecol 48:1048–1056. doi:10.1111/j.1365-2664.2011.02002.x CrossRefGoogle Scholar
  34. Kuhnert PM, Martin TG, Griffiths SP (2010) A guide to eliciting and using expert knowledge in Bayesian ecological models. Ecol Lett 13:900–914. doi:10.1111/j.1461-0248.2010.01477.x PubMedCrossRefGoogle Scholar
  35. Li S, McShea WJ, Wang D et al (2012) Gauging the impact of management expertise on the distribution of large mammals across protected areas. Divers Distrib 18:1166–1176. doi:10.1111/j.1472-4642.2012.00907.x CrossRefGoogle Scholar
  36. Lowrance WT, Elkin EB, Jacks LM et al (2010) Comparative effectiveness of surgical treatments for prostate cancer: a population-based analysis of postoperative outcomes. J Urol 183:1366–1372. doi:10.1016/j.juro.2009.12.021 PubMedCrossRefGoogle Scholar
  37. Madhusudan MD (2003) Living amidst large wildlife: livestock and crop depredation by large mammals in the interior villages of Bhadra Tiger Reserve, South India. Environ Manag 31:466–475. doi:10.1007/s00267-002-2790-8 CrossRefGoogle Scholar
  38. Murray JV, Goldizen AW, O’Leary Ra et al (2009) How useful is expert opinion for predicting the distribution of a species within and beyond the region of expertise? a case study using brush-tailed rock-wallabies Petrogale penicillata. J Appl Ecol 46:842–851. doi:10.1111/j.1365-2664.2009.01671.x CrossRefGoogle Scholar
  39. Nugraha RT, Sugardjito J (2009) Assessment and management options of human-tiger conflicts in Kerinci Seblat National Park, Sumatra, Indonesia. Mamm Study 34:141–154CrossRefGoogle Scholar
  40. Oakley A, Strange V, Toroyan Ta et al (2003) Using random allocation to evaluate social interventions: three recent U.K. examples. Ann Am Acad Polit Soc Sci 589:170–189. doi:10.1177/0002716203254765 CrossRefGoogle Scholar
  41. Persaud DD, Nestman L (2006) The utilization of systematic outcome mapping to improve performance management in health care. Health Serv Manag Res: Off J Assoc Univ Prog Health Adm/HSMC, AUPHA 19:264–276. doi:10.1258/095148406778951466 CrossRefGoogle Scholar
  42. Petticrew M (2011) When are complex interventions “complex”? when are simple interventions “simple”? Eur J Pub Health 21:397–398. doi:10.1093/eurpub/ckr084 CrossRefGoogle Scholar
  43. PLoS Medicine Editors (2009) Ensuring integrity in comparative effectiveness research: accentuate the negative. PLoS Med 6:1–2. doi:10.1371/journal.pmed.1000152 Google Scholar
  44. Pollnac R, Christie P, Cinner JE et al (2010) Marine reserves as linked social-ecological systems. Proc Natl Acad Sci USA 107:18262–18265. doi:10.1073/pnas.0908266107 PubMedCrossRefGoogle Scholar
  45. Post GS (2010) Evaluation of Tiger Conservation in India: the use of comparative effectiveness research. Duke University Press, DurhamGoogle Scholar
  46. Pullin AS, Sutherland WJ, Gardner T et al (2013) Conservation priorities: identifying need, taking action and evaluating success. Key Top Conserv Biol 2:3–22Google Scholar
  47. Rao KS, Maikhuri RK, Nautiyal S, Saxena KG (2002) Crop damage and livestock depredation by wildlife: a case study from Nanda Devi Biosphere Reserve, India. J Environ Manage 66:317–327. doi:10.1006/jema.2002.0587 PubMedGoogle Scholar
  48. Redford KH, Baillie J, Beldomenico P et al (2011) What does it mean to successfully conserve a (vertebrate) species? Bioscience 61:39–48. doi:10.1525/bio.20II.61.1.9 CrossRefGoogle Scholar
  49. Redpath SM, Young J, Evely A et al (2013) Understanding and managing conservation conflicts. Trends Ecol Evol 28:100–109. doi:10.1016/j.tree.2012.08.021 PubMedCrossRefGoogle Scholar
  50. Robinson JG (2006) Conservation biology and real-world conservation. Conserv Biol 20:658–669. doi:10.1111/j.1523-1739.2006.00469.x PubMedCrossRefGoogle Scholar
  51. Sackett DL, Rosenberg WMC, Gray JAM et al (1996) Evidence based medicine: what it is and what it isn’t. BMJ 312:71–72. doi:10.1136/bmj.312.7023.71 PubMedCrossRefGoogle Scholar
  52. Saterson KA, Christensen NL, Jackson RB et al (2004) Disconnects in evaluating the relative effectiveness of conservation strategies. Conserv Biol 18:597–599CrossRefGoogle Scholar
  53. Schon DA (1963) Champions for radical new inventions. Harv Bus Rev 41:77–86Google Scholar
  54. Seidensticker J (2010) Saving wild tigers: a case study in biodiversity loss and challenges to be met for recovery beyond 2010. Integr Zoo 5:285–299. doi:10.1111/j.1749-4877.2010.00214.x CrossRefGoogle Scholar
  55. Sekhar NU (1998) Crop and livestock depredation caused by wild animals in protected areas: the case of Sariska Tiger Reserve, Rajasthan, India. Environ Conserv 25:160–171. doi:10.1017/S0376892998000204 CrossRefGoogle Scholar
  56. Shepperd S, Lewin S, Straus S et al (2009) Can we systematically review studies that evaluate complex interventions? PLoS Med 6:e1000086. doi:10.1371/journal.pmed.1000086 PubMedCrossRefGoogle Scholar
  57. Sodhi NS, Butler R, Laurance WF, Gibson L (2011) Conservation successes at micro-, meso- and macroscales. Trends Ecol Evol 26(11):585–594. doi:10.1016/j.tree.2011.07.002 PubMedCrossRefGoogle Scholar
  58. Sox HC, Greenfield S (2009) Comparative effectiveness research: a report from the Institute. Ann Intern Med 151:203–205PubMedCrossRefGoogle Scholar
  59. Sternin J, Choo R (2000) The power of positive deviancy. an effort to reduce malnutrition in Vietnam offers an important lesson about managing change. Harv Bus Rev 78(1):14–15PubMedGoogle Scholar
  60. Sterling EJ, Gómez A, Porzecanski AL (2010) A systemic view of biodiversity and its conservation: processes, interrelationships, and human culture: presentation of a systemic view of biodiversity and its conservation that emphasizes complex interrelationships among subsystems and includes human culture. BioEssays 32:1090–1098. doi:10.1002/bies.201000049 PubMedCrossRefGoogle Scholar
  61. Stokes EJ (2010) Improving effectiveness of protection efforts in tiger source sites: developing a framework for law enforcement monitoring using MIST. Integr Zoo 5:363–377. doi:10.1111/j.1749-4877.2010.00223.x CrossRefGoogle Scholar
  62. Sutherland WJ, Peel MJS (2010) Benchmarking as a means to improve conservation practice. Oryx 45:56–59CrossRefGoogle Scholar
  63. Sutherland WJ, Pullin AS, Dolman PM, Knight TM (2004) The need for evidence-based conservation. Trends Ecol Evol (Pers Ed) 19:305–308. doi:10.1016/j.tree.2004.03.018 CrossRefGoogle Scholar
  64. Sutherland WJ, Mitchell R, Walsh J et al (2013) Conservation practice could benefit from routine testing and publication of management outcomes. Conserv Evid 10:1–3Google Scholar
  65. Vähämäki J, Schmidt M, Molander J (2011) Review: results based management in development cooperation. Riksbankens Jubileumsfond, StockholmGoogle Scholar
  66. Varmus H (2006) The new era in cancer research. Science 312:1162–1165. doi:10.1126/science.1126758 PubMedCrossRefGoogle Scholar
  67. Voils C, Maciejewski M (2011) Challenges and opportunities in comparative effectiveness research. Comp Effect Res 1:39–41. doi:10.2147/CER.S20315 CrossRefGoogle Scholar
  68. Walston J, Robinson JG, Bennett EL et al (2010) Bringing the tiger back from the brink—the six percent solution. PLoS Biol 8:1–4. doi:10.1371/journal.pbio.1000485 CrossRefGoogle Scholar
  69. Wikramanayake E, Dinerstein E, Seidensticker J et al (2011) A landscape-based conservation strategy to double the wild tiger population. Conserv Lett 4(3):219–227. doi:10.1111/j.1755-263X.2010.00162.x CrossRefGoogle Scholar
  70. Wilt TJ, Macdonald R, Rutks I et al (2008) Annals of internal medicine review systematic review: comparative effectiveness and harms of treatments for clinically localized prostate cancer. Ann Inter Med 148(6):435–448CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Duke UniversityDurhamUSA
  2. 2.Wildlife Institute of IndiaDehradunIndia

Personalised recommendations