Biodiversity and Conservation

, Volume 22, Issue 8, pp 1731–1754 | Cite as

Using unclassified continuous remote sensing data to improve distribution models of red-listed plant species

  • Miia Parviainen
  • Niklaus E. Zimmermann
  • Risto K. Heikkinen
  • Miska Luoto
Original Paper


Remote sensing (RS) data may play an important role in the development of cost-effective means for modelling, mapping, planning and conserving biodiversity. Specifically, at the landscape scale, spatial models for the occurrences of species of conservation concern may be improved by the inclusion of RS-based predictors, to help managers to better meet different conservation challenges. In this study, we examine whether predicted distributions of 28 red-listed plant species in north-eastern Finland at the resolution of 25 ha are improved when advanced RS-variables are included as unclassified continuous predictor variables, in addition to more commonly used climate and topography variables. Using generalized additive models (GAMs), we studied whether the spatial predictions of the distribution of red-listed plant species in boreal landscapes are improved by incorporating advanced RS (normalized difference vegetation index, normalized difference soil index and Tasseled Cap transformations) information into species-environment models. Models were fitted using three different sets of explanatory variables: (1) climate-topography only; (2) remote sensing only; and (3) combined climate-topography and remote sensing variables, and evaluated by four-fold cross-validation with the area under the curve (AUC) statistics. The inclusion of RS variables improved both the explanatory power (on average 8.1 % improvement) and cross-validation performance (2.5 %) of the models. Hybrid models produced ecologically more reliable distribution maps than models using only climate-topography variables, especially for mire and shore species. In conclusion, Landsat ETM+ data integrated with climate and topographical information has the potential to improve biodiversity and rarity assessments in northern landscapes, especially in predictive studies covering extensive and remote areas.


Endangered plant species GAM High-latitude landscape Landsat ETM+ Predictive modelling Productivity Remote sensing 



A study of this nature would not have been possible without the hundreds of volunteers who contributed their data to the red-listed plant species database. M. J. Bailey helped with correction of the English text. Terhi Ryttäri helped in aggregating the species data for this study. Different parts of this research were funded by the Academy of Finland (project grant 116544) and the EC FP6 Integrated Projects ALARM (GOCE-CT-2003-506675) (Settele et al. 2005), ECOCHANGE (GOCE-2006-036866), and EU FP7 project SCALES (project #226852).


  1. Ahti T, Hämet-Ahti L, Jalas J (1968) Vegetation zones and their sections in northwestern Europe. Annales Botanici Fennici 5:169–211Google Scholar
  2. Akaike H (1974) A new look at statistical model identification. IEEE Trans Autom Control AU-19:716–722Google Scholar
  3. Araújo MB, Guisan A (2006) Five (or so) challenges for species distribution modelling. J Biogeogr 33:1677–1688CrossRefGoogle Scholar
  4. Araújo MB, Pearson RG, Thuiller W, Erhard M (2005) Validation of species-climate impact models under climate change. Glob Change Biol 11:1504–1513CrossRefGoogle Scholar
  5. Astorga A, Heino J, Luoto M, Muotka T (2011) Freshwater biodiversity at regional extent: determinants of macroinvertebrate taxonomic richness in headwater streams. Ecography 34:705–713CrossRefGoogle Scholar
  6. Atlas of Finland (1987) Climate, Folio 131. National Board of Survey & Geographical Society of Finland, HelsinkiGoogle Scholar
  7. Atlas of Finland (1990) Geology, Folio 123-126. National Board of Survey & Geographical Society of Finland, HelsinkiGoogle Scholar
  8. Austin MP (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol Model 157:101–118CrossRefGoogle Scholar
  9. Austin M (2007) Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecol Model 200:1–19CrossRefGoogle Scholar
  10. Austin M, Meyers JA (1996) Current approaches to modelling the environmental niche of eucalypts: implication for management of forest biodiversity. For Ecol Manage 85:95–106CrossRefGoogle Scholar
  11. Austin MP, Van Niel KP (2011a) Impact of landscape predictors on climate change modelling of species distributions: a case study with Eucalyptus fastigata in southern New South Wales, Australia. J Biogeogr 38:9–19CrossRefGoogle Scholar
  12. Austin MP, Van Niel KP (2011b) Improving species distribution models for climate change studies: variable selection and scale. J Biogeogr 38:1–8CrossRefGoogle Scholar
  13. Bartel RA, Sexton JO (2009) Monitoring habitat dynamics for rare and endangered species using satellite images and niche-based models. Ecography 32:888–896CrossRefGoogle Scholar
  14. Bonan GB, Shugart HH (1989) Environmental factors and ecological processes in boreal forests. Annu Rev Ecol Syst 20:1–28CrossRefGoogle Scholar
  15. Box EO, Holben BN, Kalb V (1989) Accuracy of the AVHRR vegetation index as a predictor of biomass, primary productivity and net CO2 flux. Vegetatio 80:71–89CrossRefGoogle Scholar
  16. Buermann W, Saatchi S, Smith TB, Zutta BR, Chaves JA, Milá B, Graham CH (2008) Predicting species distributions across the Amazonian and Andean regions using remote sensing data. J Biogeogr 35:1160–1176CrossRefGoogle Scholar
  17. Carroll C, Johnson DS (2008) The importance of being spatial (and reserved): assessing northern spotted owl habitat relationships with hierarchical Bayesian models. Conserv Biol 22:1026–1036Google Scholar
  18. Cohen WB, Spies TA, Fiorella M (1995) Estimating the age and structure of forests in a multi-ownership landscape of western Oregon, USA International. J Remote Sens 16:721–746CrossRefGoogle Scholar
  19. Cord A, Rödder D (2011) Inclusion of habitat availability in species distribution models through multi-temporal remote-sensing data? Ecol Appl 21:3285–3298CrossRefGoogle Scholar
  20. Cramer W, Kicklighter DW, Bondeau A, Moore B, Churkina C, Nemry B, Ruimy A, Schloss AL (1999) Comparing global models of terrestrial net primary productivity (NPP): overview and key results. Glob Change Biol 5:1–15CrossRefGoogle Scholar
  21. Crist EP (1985) A TM tasseled cap equivalent transformation for reflectance factor data. Remote Sens Environ 17:301–306CrossRefGoogle Scholar
  22. Crist EP, Cicone RC (1984) A physically-based transformation of thematic mapper data—the TM tasseled cap. IEEE Trans Geosci Remote Sens 22:256–263CrossRefGoogle Scholar
  23. Currie DJ (1991) Energy and large-scale patterns of animal- and plant-species richness. Am Nat 137:27–49CrossRefGoogle Scholar
  24. de Siqueira MF, Durigan G, De Marco P Jr, Peterson AT (2009) Something from nothing: using landscape similarity and ecological niche modeling to find rare plant species. J Nat Conserv 17:25–32CrossRefGoogle Scholar
  25. Dymond CC, Mladenoff DJ, Radeloff VC (2002) Phenological differences in tasseled cap indices improve deciduous forest classification. Remote Sens Environ 80:460–472CrossRefGoogle Scholar
  26. Ekstrand S (1996) Landsat TM-based forest damage assessment: correction for topographic effects. Photogramm Eng Remote Sens 62:151–161Google Scholar
  27. Elith J, Leathwick JR (2009a) Conservation prioritization using species distribution models. In: Moilanen A, Wilson KA, Possingham HP (eds) Spatial conservation prioritization: quantitative methods and computational tools. Oxford University Press, Oxford, pp 70–93Google Scholar
  28. Elith J, Leathwick JR (2009b) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697CrossRefGoogle Scholar
  29. Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson KS, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151Google Scholar
  30. ESRI (1991) ARC/INFO user’s guide Cell-based modelling with GRID analysis, display and management. California, Environment Systems Research Institute, Inc, RedlandsGoogle Scholar
  31. Fernandez N, Delibes M, Palomares F (2006) Landscape evaluation in conservation: molecular sampling and habitat modeling for the Iberian lynx. Ecol Appl 16:1037–1049Google Scholar
  32. Fielding A, Bell J (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49CrossRefGoogle Scholar
  33. Foody GM, Cutler MEJ (2003) Tree biodiversity in protected and logged Bornean tropical rain forests and its measurement by satellite remote sensing. J Biogeogr 30:1053–1066CrossRefGoogle Scholar
  34. Franklin J (1995) Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients. Prog Phys Geogr 19:474–499CrossRefGoogle Scholar
  35. Gessler PE, Chadwick OA, Chamran F, Althouse L, Holmes K (2000) Modeling soil-landscape and ecosystem properties using terrain attributes. Soil Sci Soc Am J 64:2046–2056CrossRefGoogle Scholar
  36. Gillespie TW, Foody GM, Rocchini D, Giorgi AP, Saatchi S (2008) Measuring and modelling biodiversity from space. Prog Phys Geogr 32:203–221CrossRefGoogle Scholar
  37. Gould WA (2000) Remote sensing of vegetation, plant species richness, and regional diversity hotspots. Ecol Appl 10:1861–1870CrossRefGoogle Scholar
  38. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009CrossRefGoogle Scholar
  39. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186CrossRefGoogle Scholar
  40. Guisan A, Theurillat JP, Kienast F (1998) Predicting the potential distribution of plant species in an alpine environment. J Veg Sci 9:65–74CrossRefGoogle Scholar
  41. Guisan A, Edwards TCJ, Hastie T (2002) Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol Model 157:89–100CrossRefGoogle Scholar
  42. Guisan A, Broennimann O, Engler R, Vust M, Yoccoz NG, Lehmann A, Zimmermann NE (2006) Using niche-based models to improve the sampling of rare species. Conserv Biol 20:501–511PubMedCrossRefGoogle Scholar
  43. Guisan A, Zimmermann NE, Elith J, Graham CH, Phillips S, Peterson AT (2007) What matters for predicting the occurrences of trees: techniques, data, or species’ characteristics? Ecol Monogr 77:615–630CrossRefGoogle Scholar
  44. H-Acevedo D, Currie DJ (2003) Does climate determine broad-scale patterns of species richness? A test of the causal link by natural experiment. Glob Ecol Biogeogr 12:461–473CrossRefGoogle Scholar
  45. Härmä P, Teiniranta R, Törmä M, Repo R, Järvenpää E, Kallio M (2004) Production of CORINE2000 land cover data using calibrated LANDSAT 7 ETM satellite image mosaics and digital maps in Finland. In: IEEE International Geoscience and Remote Sensing Symposium, 20–24 Sept 2004, Anchorage, Alaska, IEEEGoogle Scholar
  46. Hastie T, Tibshirani R (1990) Generalized additive models. Chapman and Hall, LondonGoogle Scholar
  47. Heikkinen O (2005) Boreal forests and northern upper timberlines. In: Seppälä M (ed) The physical geography of fennoscandia. Oxford University Press, Oxford, pp 185–200Google Scholar
  48. Heikkinen RK, Birks HJB, Kalliola RJ (1998) A numerical analysis of the mesoscale distribution patterns of vascular plants in the Kevo Nature Reserve, northern Finland. J Biogeogr 25:123–146CrossRefGoogle Scholar
  49. Heikkinen RK, Luoto M, Araújo MB, Virkkala R, Thuiller W, Sykes MT (2006) Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog Phys Geogr 30:751–777CrossRefGoogle Scholar
  50. Heikkinen RK, Marmion M, Luoto M (2012) Does the interpolation accuracy of species distribution models come at the expense of transferability? Ecography 35:276–288CrossRefGoogle Scholar
  51. Hjort J, Luoto M (2006) Modelling patterned ground distribution in Finnish Lapland: an integration of topographical, ground and remote sensing information. Geografiska Annaler 88A:19–29CrossRefGoogle Scholar
  52. Huang C, Wylie B, Yang L, Homer C, Zylstra G (2002) Derivation of a tasselled cap transformation based on Landsat 7 at-satellite reflectance. Int J Remote Sens 23:1741–1748CrossRefGoogle Scholar
  53. Huntley B (1995) Plant species’ response to climate change: implications for the conservation of European birds. Ibis 137(Supplement 1):127–138Google Scholar
  54. Huntley B, Berry PM, Cramer W, McDonald AP (1995) Modelling present and potential future ranges of some European higher plants using climate response surfaces. J Biogeogr 22:967–1001CrossRefGoogle Scholar
  55. Jimenez-Valverde A, Lobo JM (2007) Threshold criteria for conversion of probability of species presence to either-or presence-absence. Acta Oecol 31:361–369CrossRefGoogle Scholar
  56. John R, Chen J, Lu N, Guo K, Liang C, Wei Y, Noormets A, Ma K, Han X (2008) Predicting plant diversity based on remote sensing products in the semi-arid region of Inner Mongolia. Remote Sens Environ 112:2018–2032CrossRefGoogle Scholar
  57. Karka S, van Rensburgb BJ (2006) Ecotones: marginal or central areas of transition? Israel J Ecol Evol 52:29–53CrossRefGoogle Scholar
  58. Kerr J, Ostrovsky M (2003) From space to species: ecological applications for remote sensing. Trends Ecol Evol 18:299–305CrossRefGoogle Scholar
  59. Kivinen S, Luoto M, Heikkinen RK, Saarinen K, Ryttäri T (2008) Threat spots and environmental determinants of red-listed plant, butterfly and bird species in boreal agricultural environments. Biodivers Conserv 17:3289–3305CrossRefGoogle Scholar
  60. Lehmann A, Overton J, Leathwick J (2002) GRASP: generalized regression analysis and spatial prediction. Ecol Model 157:189–207CrossRefGoogle Scholar
  61. Levin N, Shmida A, Levanoni O, Tamari H, Kark S (2007) Predicting mountain plant richness and rarity from space using satellite-derived vegetation indices. Divers Distrib 13:692–703CrossRefGoogle Scholar
  62. Loiselle BA, Howell CA, Graham CH, Goerck JM, Brooks T, Smith KG, Williams PH (2003) Avoiding pitfalls of using species distribution models in conservation planning. Conserv Biol 17:1591–1600CrossRefGoogle Scholar
  63. Luoto M, Toivonen T, Heikkinen RK (2002) Prediction of total and rare plant species richness in agricultural landscapes from satellite images and topographic data. Landsc Ecol 17:195–217CrossRefGoogle Scholar
  64. Luoto M, Pöyry J, Heikkinen RK, Saarinen K (2005) Uncertainty of bioclimate envelope models based on geographical distribution of species. Glob Ecol Biogeogr 14:575–584CrossRefGoogle Scholar
  65. Maggini R, Lehmann A, Zimmermann NE, Guisan A (2006) Improving generalized regression analysis for the spatial prediction of forest communities. J Biogeogr 33:1729–1749CrossRefGoogle Scholar
  66. Manel S, Williams HC, Ormerod SJ (2001) Evaluating presence-absence models in ecology: the need to account for prevalence. J Appl Ecol 38:921–931CrossRefGoogle Scholar
  67. McPherson JM, Jetz W (2007) Effect of species’ ecology on the accuracy of distribution models. Ecography 30:135–151Google Scholar
  68. Muldavin EH, Neville P, Harper G (2001) Indices of grassland biodiversity in the Chihuahuan desert ecoregion derived from remote sensing. Conserv Biol 15:844–855CrossRefGoogle Scholar
  69. Myneni RB, Hall FG, Sellers PJ, Marshak AL (1995) The interpretation of spectral vegetation indexes. IEEE Trans Geosci Remote Sens 33:481–486CrossRefGoogle Scholar
  70. Nagendra H (2001) Using remote sensing to assess biodiversity. Int J Remote Sens 22:2377–2400CrossRefGoogle Scholar
  71. Newbold T (2010) Applications and limitations of museum data for conservation and ecology, with particular attention to species distribution models. Prog Phys Geogr 34:3–22CrossRefGoogle Scholar
  72. Palmer MW, Earls P, Hoagland BW, White PS, Wohlgemuth T (2002) Quantitative tools for perfecting species lists. Environmetrics 13:121–137CrossRefGoogle Scholar
  73. Parra JL, Graham CC, Freile JF (2004) Evaluating alternative data sets for ecological niche models of birds in the Andes. Ecography 27:350–360CrossRefGoogle Scholar
  74. Parviainen M, Luoto M, Ryttäri T, Heikkinen RK (2008) Modelling the occurrence of threatened plant species in taiga landscapes: methodological and ecological perspectives. J Biogeogr 35:1888–1905CrossRefGoogle Scholar
  75. Parviainen M, Luoto M, Heikkinen RK (2009) The role of local and landscape level productivity in modelling of boreal plant species richness. Ecol Model 220:2690–2701CrossRefGoogle Scholar
  76. Parviainen M, Luoto M, Heikkinen RK (2010) NDVI -based productivity and heterogeneity as indicators of species richness in boreal landscapes. Boreal Environ Res 15:301–318Google Scholar
  77. Pausas JG, Carreras J, Ferre A, Font X (2003) Coarse-scale plant species richness in relation to environmental heterogeneity. J Veg Sci 14:661–668CrossRefGoogle Scholar
  78. Pearce JL, Boyce MS (2006) Modelling distribution and abundance with presence-only data. J Appl Ecol 43:405–412CrossRefGoogle Scholar
  79. Pearson RG (2007) Species’ distribution modeling for conservation educators and practitioners. Synthesis. American Museum of Natural History http://ncepamnhorg
  80. Pearson RG, Dawson TP, Liu C (2004) Modelling species distributions in Britain: a hierarchical integration of climate and land-cover data. Ecography 27:285–298CrossRefGoogle Scholar
  81. Peterson AT (2003) Projected climate change effects on Rocky Mountain and Great Plain birds: generalities on biodiversity consequences. Glob Change Biol 9:647–655CrossRefGoogle Scholar
  82. Ponder WF, Carter GA, Flemons P, Chapman RR (2001) Evaluation of museum collection data for use in biodiversity assessment. Conserv Biol 15:648–657CrossRefGoogle Scholar
  83. Pöyry J, Luoto M, Heikkinen RK, Saarinen K (2008) Species traits are associated with the quality of bioclimatic models. Glob Ecol Biogeogr 17:403–414CrossRefGoogle Scholar
  84. Randin CF, Dirnböck T, Dullinger S, Zimmerman NE, Zappa M, Guisan A (2006) Are niche-based species distribution models transferable in space. J Biogeogr 33:1689–1703CrossRefGoogle Scholar
  85. Rassi P, Hyvärinen E, Juslén A, Mannerkoski I (eds) (2010) The 2010 red list of Finnish species. Ministry of the Environment & Finnish Environment Institute, HelsinkiGoogle Scholar
  86. Raynolds MK, Walker DA, Maier HA (2006) NDVI patterns and phytomass distribution in the circumpolar Arctic. Remote Sens Environ 102:271–281CrossRefGoogle Scholar
  87. Redpath SM, Young J, Evely A, Adams WM, Sutherland WJ, Whitehouse A, Amar A, Lambert RA, Linnell JD, Watt A, Gutiérrez RJ (2013) Understanding and managing conservation conflicts. Trends Ecol Evol 28:100–109PubMedCrossRefGoogle Scholar
  88. Reed BC, Brown JF, VanderZee D, Loveland TR, Merchant JW, Ohlen DO (1994) Measuring phenological variability from satellite imagery. J Veg Sci 5:703–714CrossRefGoogle Scholar
  89. Rocchini D, Chiarucci A, Loiselle SA (2004) Testing the spectral variation hypothesis by using satellite multispectral images. Acta Oecol 26:117–120CrossRefGoogle Scholar
  90. Rocchini D, Balkenhol N, Carter GA, Foody GM, Gillespie TW, He KS, Kark S, Levin N, Lucas K, Luoto M, Nagendra H, Oldeland J, Ricotta C, Southworth J, Neteler M (2010) Remotely sensed spectral heterogeneity as a proxy of species diversity: recent advances and open challenges. Ecol Inform 5:318–329CrossRefGoogle Scholar
  91. Rogers AS, Kearney MS (2004) Reducing signature variability in unmixing coastal marsh Thematic Mapper scenes using spectral indices. Int J Remote Sens 25:2317–2335CrossRefGoogle Scholar
  92. Roura-Pascual N, Suarez AV, McNyset K, Gómez K, Pons P, Touyama Y, Wild A, Gascon F, Peterson AT (2006) Niche differentiation and fine-scale projections for Argentine ants based on remotely sensed data. Ecol Appl 16:1832–1841PubMedCrossRefGoogle Scholar
  93. Rouse JW Jr, Hass RH, Deering DW, Schell JA, Harlan JC (1973) Monitoring the vernal advancement and retrogression (green wave effect) of natural vegetation NASA/GSFC Type III Final report Geenbelt, MarylandGoogle Scholar
  94. Rushton SP, Ormerod SJ, Kerby G (2004) New paradigms for modelling species distributions? J Appl Ecol 41:193–200CrossRefGoogle Scholar
  95. Ryttäri T, Kettunen T (1997) Uhanalaiset kasvimme. Tampere, Suomen Ympäristökeskus, Kirjayhtymä OyGoogle Scholar
  96. Saatchi S, Buermann W, ter Steege H, Mori S, Smith TB (2008) Modeling distribution of Amazonian tree species and diversity using remote sensing measurements. Remote Sens Environ 112:2000–2017CrossRefGoogle Scholar
  97. Sala OE, Chapin FSI, Armesto JJ, Berlow E, Bloomfield J, Dirzo R (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774PubMedCrossRefGoogle Scholar
  98. Schmidtlein S, Feilhauer H, Bruelheide H (2012) Mapping plant strategy types using remote sensing. J Veg Sci 23:395–405CrossRefGoogle Scholar
  99. Schwarz M, Zimmermann NE (2005) A new GLM-based method for mapping tree cover continuous fields using MODIS reflectance data. Remote Sens Environ 95:428–443CrossRefGoogle Scholar
  100. Seoane J, Vinuela J, Díaz-Delgado R, Bustamante J (2003) The effects of land use and climate on red kite distribution in the Iberian peninsula. Biol Conserv 11:401–414CrossRefGoogle Scholar
  101. Seoane J, Carrascal LM, Alonso CL, Palomino D (2005) Species-specific traits associated to prediction errors in bird habitat suitability modelling. Ecol Model 185:299–308CrossRefGoogle Scholar
  102. Seto KC, Fleishman E, Fay JP, Betrus CJ (2004) Linking spatial patterns of bird and butterfly species richness with Landsat TM derived NDVI. Int J Remote Sens 25:4309–4324CrossRefGoogle Scholar
  103. Settele J, Hammen V, Hulme P, Karlson U, Klotz S, Kotarac M, Kunin W, Marion G, O’Connor M, Petanidou T, Peterson K, Potts S, Pritchard H, Pysek P, Rounsevell M, Spangenberg J, Steffan-Dewenter I, Sykes M, Vighi M, Zobel M, Kuhn I (2005) Alarm: assessing Large-scale environmental Risks for biodiversity with tested Methods GAIA. Ecol Perspect Sci Soc 14:69–72Google Scholar
  104. Skakun RS, Wulder MA, Franklin SE (2003) Sensitivity of the thematic mapper enhanced wetness difference index to detect mountain pine beetle red-attack damage. Remote Sens Environ 86:433–443CrossRefGoogle Scholar
  105. Skov F, Svenning J-C (2004) Potential impact of climatic change on the distribution of forest herbs in Europe. Ecography 27:366–380Google Scholar
  106. Söyrinki N, Saari V (1980) Die Flora von Oulanka Nationalpark, Nordfinnland. Acta Botanica Fennica 114:1–149Google Scholar
  107. Thuiller W (2003) BIOMOD—optimizing predictions of species distributions and projecting potential future shifts under global change. Glob Change Biol 9:1353–1362CrossRefGoogle Scholar
  108. Thuiller W, Araújo MB, Lavorel S (2004) Do we need land-cover data to predict species distributions in Europe? J Biogeogr 31:353–361CrossRefGoogle Scholar
  109. Thuiller W, Lavorel S, Araújo MB (2005) Niche properties and geographical extent as predictors of species sensitivity to climate change. Glob Ecol Biogeogr 14:347–357CrossRefGoogle Scholar
  110. Thuiller W, Albert C, Araújo MB, Berry PM, Cabeza M, Guisan A, Hickler T, Midgley GF, Paterson J, Schurr FM, Sykes MT, Zimmermann NE (2008) Predicting global change impacts on plant species’ distributions: future challenges. Perspect Plant Ecol Evol Syst 9:137–152CrossRefGoogle Scholar
  111. Tucker CJ (1978) A comparison of satellite sensor bands for vegetation monitoring. Photogramm Eng Remote Sens 44:1369–1380Google Scholar
  112. Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8:127–150CrossRefGoogle Scholar
  113. Turner W, Spector S, Gardiner N, Fladeland M, Sterling E, Steininger M (2003) Remote sensing for biodiversity science and conservation. Trends Ecol Evol 18:306–314CrossRefGoogle Scholar
  114. Vajda A, Venäläinen A (2003) The influence of natural conditions on the spatial variation of climate in Lapland, northern Finland. Int J Climatol 23:1011–1022CrossRefGoogle Scholar
  115. Vasari Y, Tonkov S, Vasari A, Nikolova A (1996) The Late-quaternary history of the vegetation and flora in northeastern Finland in the light of a re-investigation of Aapalampi in Salla. Auqilo Ser Botany 36:27–41Google Scholar
  116. Venables WN, Ripley BD (2002) Modern applied statistics with S. Springer-Verlag, BerlinCrossRefGoogle Scholar
  117. Venäläinen A, Heikinheimo M (2002) Meteorological data for agricultural applications. Phys Chem Earth 27:1045–1050CrossRefGoogle Scholar
  118. Virkkala R, Luoto M, Heikkinen RK, Leikola N (2005) Distribution patterns of boreal marshland birds: modelling the relationships to land cover and climate. J Biogeogr 32:1957–1970CrossRefGoogle Scholar
  119. Wang K, Franklin SE, Guo X, Cattet M (2010) Remote sensing of ecology, biodiversity and conservation: a review from the perspective of remote sensing specialists. Sensors 10:9647–9667PubMedCrossRefGoogle Scholar
  120. Weiers S, Bock M, Wissen M, Rossner G (2004) Mapping and indicator approaches for the assessment of habitats at different scales using remote sensing and GIS methods. Landsc Urban Plan 67:43–65CrossRefGoogle Scholar
  121. Wilson CD, Roberts D, Reid N (2010) Applying species distribution modelling to identify areas of high conservation value for endangered species: A case study using Margaritifera margaritifera (L.). Biol Conserv 144:821–829Google Scholar
  122. Wood S, Augustin N (2002) GAMs with integrated model selection using penalized regression splines and applications to environmental modelling. Ecol Model 157:157–177CrossRefGoogle Scholar
  123. Wright DH, Currie DJ, Maurer BA (1993) Energy supply and patterns of species richness on local and regional scales. In: Ricklefs RE, Schluter D (eds) Species diversity in ecological communities: historical and geographical perspectives. University of Chicago Press, Chicago, pp 66–74Google Scholar
  124. Wu XB, Smeins FE (2000) Multiple-scale habitat modeling approach for rare plant conservation. Landsc Urban Plan 51:11–28CrossRefGoogle Scholar
  125. Yee TW, Mitchell ND (1991) Generalized additive models in plant ecology. J Veg Sci 2:587–602CrossRefGoogle Scholar
  126. Young J, Watt A, Nowicki P, Alard D, Clitherow J, Henle K, Johnson R, Laczko E, McCracken D, Matouch S, Niemelä J, Richards C (2005) Towards sustainable land use: identifying and managing conflicts between human activities and biodiversity conservation in Europe. Biodivers Conserv 14:1641–1661CrossRefGoogle Scholar
  127. Zaniewski AE, Lehmann A, Overton JM (2002) Predicting species spatial distributions using presence-only data: a case study of native New Zealand ferns. Ecol Model 157:261–280CrossRefGoogle Scholar
  128. Zimmermann NE, Edwards TC, Moisen GG, Frescino TS, Blackard JA (2007) Remote sensing-based predictors improve distribution models of rare, early successional and broadleaf tree species in Utah. J Appl Ecol 44:1057–1067PubMedCrossRefGoogle Scholar
  129. Zimmermann NE, Edwards TC, Graham CH, Pearman PB, Svenning J-C (2010) New trends in species distribution modelling. Ecography 33:985–989CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Miia Parviainen
    • 1
  • Niklaus E. Zimmermann
    • 2
  • Risto K. Heikkinen
    • 3
  • Miska Luoto
    • 4
  1. 1.Finnish Forest Research InstituteUniversity of OuluOuluFinland
  2. 2.Swiss Federal Research Institute WSLBirmensdorfSwitzerland
  3. 3.Finnish Environment InstituteNatural Environment CentreHelsinkiFinland
  4. 4.Department of Geosciences and GeographyUniversity of HelsinkiHelsinkiFinland

Personalised recommendations