Biodiversity and Conservation

, Volume 22, Issue 4, pp 1049–1061 | Cite as

Effects of experimentally planting non-crop flowers into cabbage fields on the abundance and diversity of predators

  • Nadine Ditner
  • Oliver Balmer
  • Jan Beck
  • Theo Blick
  • Peter Nagel
  • Henryk Luka
Original Paper

Abstract

Flowery field margins and intersowing of crops with flowers are used as management practices to promote arthropod biodiversity as well as biocontrol agents. Positive effects of enhancement (in abundance and species richness) of hymenopteran parasitoids on control of Lepidoptera pests have previously been demonstrated. However, effects on predatory arthropods, which may also serve as pest control agents, remain unclear. In an experimental study in cabbage fields we tested how sown flower strips on field margins and intersowing with cornflower affected the species richness, abundance and community composition of ground beetles and spiders. Furthermore, we investigated whether effects of flower margins are dependent on the distance from the field margins. We found that field margins generally harboured higher species richness, whereas effects on abundance were weaker. Intersown cornflower had positive effects on spider and ground beetle abundance, but affected species richness only weakly. Our results do not provide evidence for effects of distance from the flowery field margins on predator richness or abundance. Species composition was strongly affected by the habitat management actions. We conclude that habitat management practices like flower strips on field margins and intersowing with flowers, which are primarily added to attract and enhance parasitoids for pest control, also benefit biodiversity conservation in spiders and ground beetles. They also positively affect the abundance of these primarily predatory taxa, which adds to the biocontrol potential of non-crop flowering plants.

Keywords

Araneae Carabidae Companion plants Flower strips Habitat management Organic farming Pest control 

Notes

Acknowledgments

We thank all farmers and Rathgeb’s Bioprodukte (Unterstammheim, Switzerland) for making their fields available, Lukas Pfiffner (Research Institute of Organic Agriculture (FiBL) for discussions on experimental design, Nadja Haefeli, Bettina Weishaupt and Sebastian Moos for help with field and lab work, and Andreas Schötzau for statistical support. Werner Marggi (Natural History Museum Bern) helped with taxonomic identification of some Carabidae and Heiner Lenzin (University of Basel) with botany. The project was financially supported by the Bristol Foundation, the Federal Office for the Environment (BAFU), the Parrotia-Foundation, the Werner Steiger Foundation, the Ernst Göhner Foundation, the Singenberg Foundation, the Spendenstiftung Bank Vontobel, Schöni Swissfresh AG and the Stiftung zur internationalen Erhaltung der Pflanzenvielfalt.

Supplementary material

10531_2013_469_MOESM1_ESM.txt (501 kb)
Supplementary material 1 (TXT 500 kb)
10531_2013_469_MOESM2_ESM.pdf (127 kb)
Supplementary material 2 (PDF 126 kb)

References

  1. Altieri MA (1999) The ecological role of biodiversity in agroecosystems. Agric Ecosyst Environ 74:19–31CrossRefGoogle Scholar
  2. Altieri MA, Letourneau DK (1982) Vegetation management and biological control in agroecosystems. Crop Prot 1:405–430CrossRefGoogle Scholar
  3. Armstrong G, McKinlay RG (1997) Vegetation management in organic cabbages and pitfall catches of carabid beetles. Agric Ecosyst Environ 63:267–276CrossRefGoogle Scholar
  4. Beck J, Pfiffner L, Ballesteros-Mejia L, Blick T, Luka H (2013) Revisiting the indicator problem: can three epigean arthropod taxa inform about each other’s biodiversity? Divers Distrib, online early. doi:10.1111/ddi.12021 Google Scholar
  5. Belz E, Kolliker M, Balmer O (2013) Olfactory attractiveness of flowering plants to the parasitoid Microplitis mediator: potential implications for biological control. Biocontrol. doi:10.1007/s10526-012-9472-0 Google Scholar
  6. Bianchi FJ, Booij CJ, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc Roy Soc B 273:1715–1727CrossRefGoogle Scholar
  7. Blick T, Pfiffner L, Luka H (2000) Epigäische Spinnen auf Äckern der Nordwest-Schweiz im mitteleuropäischen Vergleich (Arachnida: Araneae). Mitteilungen der Deutschen Gesellschaft für allgemeine und angewandte Entomologie 12:267–276Google Scholar
  8. Blick T, Bosmans R, Buchar J, Gajdos P, Hänggi A, Van Helsdingen P, Ruzicka V, Starega W, Thaler K (2004) Checklist of the spiders of Central Europe (Arachnida: Araneae), version 1. http://www.arages.de/. Accessed Nov 2012
  9. Blick T, Finch O-D, Harms KH, Kiechle J, Kielhorn K-H, Kreuels M, Malten A, Martin D, Muster C, Nährig D, Platen R, Rödel I, Scheidler M, Staudt A, Stumpf H, Tolke D (2013) Rote Liste der Spinnen Deutschlands (Araneae). Naturschutz und Biologische Vielfalt 70(4)Google Scholar
  10. Bohan DA, Boursault A, Brooks DR, Petit S (2011) National-scale regulation of the weed seedbank by carabid predators. J Appl Ecol 48:888–898CrossRefGoogle Scholar
  11. Braun-Blanquet J (1964) Pflanzensoziologie: grundzüge der vegetationskunde. Springer, WienCrossRefGoogle Scholar
  12. Dempster JP (1967) The control of Pieris rapae with DDT. I. The natural mortality of the young stages of Pieris. J Appl Ecol 4:485–500CrossRefGoogle Scholar
  13. Dempster JP (1969) Some effects of weed control on the numbers of the small cabbage white (Pieris rapae L.) on brussels sprouts. J Appl Ecol 6:339–345CrossRefGoogle Scholar
  14. Dennis P, Fry GLA (1992) Field margins: can they enhance natural enemy population densities and general arthropod diversity on farmland? Agric Ecosyst Environ 40:95–115CrossRefGoogle Scholar
  15. Dornieden K (2005) Laufkäfer, Carabidae. Ökoporträt (NVH/BSH) 38:1–5Google Scholar
  16. Duelli P (1994) Rote Listen der gefährdeten Tierarten der Schweiz. Bundesamt für Umwelt, BernGoogle Scholar
  17. Finch S, Kienegger M (1997) A behavioural study to help clarify how undersowing with clover affects host-plant selection by pest insects of brassica crops. Entomol Exp Appl 84:165–172CrossRefGoogle Scholar
  18. Franzen M, Nilsson SG (2008) How can we preserve and restore species richness of pollinating insects on agricultural land? Ecography 31:698–708CrossRefGoogle Scholar
  19. Geiger F, Wackers F, Bianchi F (2009) Hibernation of predatory arthropods in semi-natural habitats. Biocontrol 54:529–535CrossRefGoogle Scholar
  20. Géneau CE, Wäckers FL, Luka H, Daniel C, Balmer O (2012) Selective flowers to enhance biological control of cabbage pests by parasitoids. Basic Appl Ecol 13:85–93CrossRefGoogle Scholar
  21. Gurr G (2000) Biological control: measures of success. Kluwer Academic Publishers, Dordrecht, p 429CrossRefGoogle Scholar
  22. Gurr GM, Wratten SD, Luna JM (2003) Multi-function agricultural biodiversity: pest management and other benefits. Basic Appl Ecol 4:107–116CrossRefGoogle Scholar
  23. Haaland C, Naisbit RE, Bersier L-F (2011) Sown wildflower strips for insect conservation: a review. Ins Cons Divers 4:60–80CrossRefGoogle Scholar
  24. Hänggi A (1989) Erfolgskontrollen in naturschutzgebieten—gedanken zur notwendigkeit der erfolgskontrolle und vorschlag einer methode der erfolgskontrolle anhand der spinnenfauna. Natur Landschaft 64:143–146Google Scholar
  25. Hänggi A, Stäubli A (2012) Nachträge zum „Katalog der schweizerischen Spinnen“4. Neunachweise von 2002 bis 2011. Arachnologische Mitteilungen 44: 59–76Google Scholar
  26. Hatteland BA, Symondson WOC, King RA, Skage M, Schander C, Solhoy T (2011) Molecular analysis of predation by carabid beetles (Carabidae) on the invasive Iberian slug Arion lusitanicus. Bull Entomol Res 101:675–686PubMedCrossRefGoogle Scholar
  27. Holland JM (2002) The agroecology of carabid beetles. Intercept Ltd., Bedfordshire, p 356Google Scholar
  28. Holland JM, Reynolds CJM (2003) The impact of soil cultivation on arthropod (Coleoptera and Araneae) emergence on arable land. Pedobiologia 47:181–191CrossRefGoogle Scholar
  29. Huber C, Marggi W (2005) Raumbedeutsamkeit und Schutzverantwortung am Beispiel der Laufkäfer der Schweiz (Coleoptera, Carabidae) mit Ergänzungen zur Roten Liste. Mitteilungen der Schweizer entomologischen Gesellschaft 78:375–397Google Scholar
  30. Jordi B (2010) Bodennutzung im Wandel: Arealstatistik Schweiz. Bundesamt für Statistik, Neuchâtel, p 31Google Scholar
  31. Kotze DJ, O’Hara RB (2003) Species decline-but why? Explanations of carabid beetle (Coleoptera, Carabidae) declines in Europe. Oecologia 135:138–148PubMedGoogle Scholar
  32. Kromp B, Steinberger K-H (1992) Grassy field margins and arthropod diversity: a case study on ground beetles and spiders in eastern Austria (Coleoptera: Carabidae; Arachnida: Aranei, Opiliones). Agric Ecosyst Environ 40:71–93CrossRefGoogle Scholar
  33. Landis DA, Wratten SD, Gurr GM (2000) Habitat management to conserve natural enemies of arthropod pests in agriculture. Ann Rev Entomol 45:175–201CrossRefGoogle Scholar
  34. Lavandero B, Wratten S, Shishehbor P, Worner S (2005) Enhancing the effectiveness of the parasitoid Diadegma semiclausum (Helen): movement after use of nectar in the field. Biol Control 34:152–158CrossRefGoogle Scholar
  35. Limpert E, Stahel WA, Abbt M (2001) Log-normal distributions across the sciences: keys and clues. Bioscience 51:341–352CrossRefGoogle Scholar
  36. Löbl I, Smetana A (2003) Archostemata, Myxophage, Adephaga, Catalogue of Palaearctic Coleoptera. Apollo Books, StenstrupGoogle Scholar
  37. Luff ML (1987) Biology of polyphagous ground beetles in agriculture. Agric Zoolog Rev 2:237–278Google Scholar
  38. Luka H (1996) Laufkäfer: nützlinge und Bioindikatoren in der Landwirtschaft. Agrarforschung 3:33–36Google Scholar
  39. Luka H (2004) Ökologische Bewertung von Landschaftselementen mit Arthropoden. Opuscula Biogeographica Basileensia 4:1–253Google Scholar
  40. Luka H, Lutz M, Blick T, Pfiffner L (2001) Einfluss von eingesäten Wildblumenstreifen auf die epigäischen Laufkäfer und Spinnen (Carabidae und Araneae) in der intensiv genutzten Agrarlandschaft “Grosses Moos”. Schweiz Peckiana 1:45–60Google Scholar
  41. Luka H, Marggi W, Huber C, Gonseth Y, Nagel P (2009) Coleoptera, Carabidae: ecology, atlas. Centre suisse de cartographie de la faune, Neuchâtel, p 677Google Scholar
  42. Marggi WA (1992) Faunistik der Sandlaufkäfer und Laufkäfer der Schweiz (Cicindelidae & Carabidae, Coleoptera): unter besonderer Berücksichtigung der “Roten Listen” Teil 1: Documenta faunistica helvetiae. Centre suisse de cartographie de la faune, Neuchâtel, p 477Google Scholar
  43. MEA (2005) Ecosystems and human well-being: Synthesis. Island Press, Washington, p 137Google Scholar
  44. Meek B, Loxton D, Sparks T, Pywell R, Pickett H, Nowakowski M (2002) The effect of arable field margin composition on invertebrate biodiversity. Biol Cons 106:259–271CrossRefGoogle Scholar
  45. Merckx T, Marini L, Feber RE, Macdonald DW (2013) Hedgerow trees and extended-width field margins enhance macro-moth diversity: implications for management. J Appl Ecol. doi:10.1111/j.1365-2664.2012.02211.x Google Scholar
  46. Müller-Motzfeld G (2006) Carabidae (Laufkäfer), Band 2, Adephaga 1. In: Freude H, Harde KW, Lohse GA, Klausnitzer B (eds) Die Käfer Mitteleuropas. Spektrum Akademischer Verlag, Heidelberg, pp 1–52Google Scholar
  47. Nagel P (1999) Biogeographische Raumanalyse und Raumbewertung mit Tieren. In: Schneider-Sliwa R, Schaub D, Gerold G (eds) Angewandte Landschaftsökologie—Grundlagen und Methoden. Springer, Berlin, pp 397–425CrossRefGoogle Scholar
  48. Nährig D, Kiechle J, Harms KH (2003) Rote Liste der Webspinnen (Araneae) Baden-Württembergs. Naturschutz-Praxis Artenschutz 7:7–162Google Scholar
  49. Pfiffner L, Luka H (2000) Overwintering of arthropods in soils of arable fields and adjacent semi-natural habitats. Agric Ecosyst Environ 78:215–222CrossRefGoogle Scholar
  50. Pfiffner L, Luka H, Schlatter C, Juen A, Traugott M (2009) Impact of wildflower strips on biological control of cabbage lepidopterans. Agric Ecosyst Environ 129:310–314CrossRefGoogle Scholar
  51. Pisani Gareau T, Shennan C (2010) Can hedgerows attract beneficial insects and improve pest control? A study of hedgerows on central coast farms. CASFS Cent Res Brief 13:1–9Google Scholar
  52. Platnick NI (2012) The world spider catalog, version 13.0. The American Museum of Natural History. http://research.amnh.org/iz/spiders/catalog/. Accessed Nov 2012
  53. Purvis G, Curry JP (1984) The influence of weeds and farmyard manure on the activity of Carabidae and other ground-dwelling arthropods in a sugar beet crop. J Appl Ecol 21:271–283CrossRefGoogle Scholar
  54. R Development Core Team (2009) R: A language and environment for statistical computing. Austria, ViennaGoogle Scholar
  55. Rainio J, Niemela J (2003) Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodiv Cons 12:487–506CrossRefGoogle Scholar
  56. Robinson RA, Sutherland WJ (2002) Post-war changes in arable farming and biodiversity in Great Britain. J Appl Ecol 39:157–176CrossRefGoogle Scholar
  57. Ryan J, Ryan MF, McNaeidhe F (1980) The effect of interrow plant cover on populations of the cabbage root fly, Delia brassicae (Wiedemann). J Appl Ecol 17:31–40CrossRefGoogle Scholar
  58. Schellhorn NA, Sork VL (1997) The impact of weed diversity on insect population dynamics and crop yield in collards, Brassica oleraceae (Brassicaceae). Oecologia 111:233–240CrossRefGoogle Scholar
  59. Shelton AM, Andaloro JT, Hoy CW (1983) Survey of ground-dwelling predaceous and parasitic arthropods in cabbage fields in upstate New York. Environ Entomol 12:1026–1030Google Scholar
  60. Smith J, Potts SG, Woodcock BA, Eggleton P (2008) Can arable field margins be managed to enhance their biodiversity, conservation and functional value for soil macrofauna? J Appl Ecol 45:269–278CrossRefGoogle Scholar
  61. Stoate C, Boatman ND, Borralho RJ, Rio Carvalho C, de Snoo GR, Eden P (2001) Ecological impacts of arable intensification in Europe. J Environ Manag 63:337–365CrossRefGoogle Scholar
  62. Suenaga H, Hamamura T (1998) Laboratory evaluation of carabid beetles (Coleoptera: Carabidae) as predators of diamondback moth (Lepidoptera: Plutellidae) larvae. Environ Entomol 27:767–772Google Scholar
  63. Suenaga H, Hamamura T (2001) Occurrence of carabid beetles (Coleoptera: Carabidae) in cabbage fields and their possible impact on lepidopteran pests. Appl Entomol Zool 36:151–160CrossRefGoogle Scholar
  64. ter Braak CJF (1996) Unimodal methods to relate species to environment. Centre for Biometry Wageningen (DLO Agricultural Mathematics Group), Wageningen, p 266Google Scholar
  65. ter Braak CJF, Smilauer P (1998) CANOCO reference manual and user’s guide to CANOCO for Windows: Software for canonical community ordination (version 4). Microcomputer Power, New York, p 352Google Scholar
  66. Thiele H-U (1977) Carabid beetles in their environments: a study on habitat selection by adaptations in physiology and behaviour. Springer, Berlin, p 369CrossRefGoogle Scholar
  67. Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecol Lett 8:857–874CrossRefGoogle Scholar
  68. Tylianakis JM, Didham RK, Wratten SD (2004) Fitness of aphid parasitoids receiving resource subsidies. Ecology 85:658–666CrossRefGoogle Scholar
  69. Weibull A-C, Bengtsson J, Nohlgren E (2000) Diversity of butterflies in the agricultural landscape: the role of farming system and landscape heterogeneity. Ecography 23:743–750CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Nadine Ditner
    • 1
    • 2
  • Oliver Balmer
    • 1
    • 3
  • Jan Beck
    • 2
  • Theo Blick
    • 4
    • 5
  • Peter Nagel
    • 2
  • Henryk Luka
    • 1
    • 2
  1. 1.Department of Plant Protection and BiodiversityResearch Institute of Organic Agriculture (FiBL)FrickSwitzerland
  2. 2.Department of Environmental Sciences (Biogeography)University of BaselBaselSwitzerland
  3. 3.Swiss Tropical and Public Health InstituteBaselSwitzerland
  4. 4.Callistus—Gemeinschaft für Zoologische & Ökologische UntersuchungenHummeltalGermany
  5. 5.Senckenberg, Forschungsinstitut und Naturmuseum, Hessische NaturwaldreservateFrankfurt am MainGermany

Personalised recommendations