Biodiversity and Conservation

, Volume 22, Issue 10, pp 2243–2267 | Cite as

Species diversity and life history traits in calcareous grasslands vary along an urbanization gradient

  • Harald AlbrechtEmail author
  • Sylvia Haider
Original Paper


Calcareous grasslands are among the most species-rich plant communities in Europe with a particularly high nature conservation value. During the past centuries their distribution has markedly decreased, at least partly due to urbanization. Thus we investigated the effects of urbanization on species diversity along a spatio-temporal urbanization gradient from traditionally managed grassland to areas affected by urban developments, which was situated in the plains northwest of Munich, Germany. Both a RLQ analysis linking species and environmental traits, and a redundancy analysis of the plant community features showed that soil disturbance, soil sealing and mean temperature explained most of the environmental variation along the gradient. The species in urban habitats showed increased insect pollination, earlier flowering and prolonged seed longevity. While urbanization favored short-lived species with dysochorous dispersal, the reference grasslands harbored more wind-pollinated perennials with effective vegetative spread and relatively large, short-lived seeds. Compared to the urban sites, traditionally used grasslands had a higher species diversity, more threatened species and a lower proportion of non-natives. We conclude that even under conservation management, urban habitats are not capable of maintaining the original biodiversity. However, we also found threatened species occurring exclusively in urban sites. Hence, urbanization decreased the area and diversity of traditional calcareous grasslands, but it also established niches for endangered species which are not adapted to the living conditions in calcareous grasslands.


Biodiversity Conservation Species traits Urban–rural gradient Habitat filtering RLQ analysis 



A group of dedicated students at the Technische Universität München helped with collecting vegetation and soil data. In addition, we thank Johannes Kollmann and two anonymous reviewers for helpful comments on earlier versions of the manuscript.

Supplementary material

10531_2013_437_MOESM1_ESM.pdf (1.4 mb)
Additional information on the study sites (photographs, explanations on site conditions and land use, GPS coordinates) (PDF 1408 kb)
10531_2013_437_MOESM2_ESM.pdf (612 kb)
Separate analyses of the R-, L- and Q-tables (PDF 612 kb)
10531_2013_437_MOESM3_ESM.pdf (287 kb)
Relationship of environmental traits to the first RLQ axis (PDF 287 kb)


  1. Albrecht H, Eder E, Langbehn T, Tschiersch C (2011) The soil seed bank and its relationship to the established vegetation in urban wastelands. Landscape Urban Plan 100:187–197. doi: 10.1016/j.landurbplan.2010.11.011 CrossRefGoogle Scholar
  2. Banaszak-Cibicka W, Żmihorski M (2012) Wild bees along an urban gradient: winners and losers. J Insect Conserv 16:331–343. doi: 10.1007/s10841-011-9419-2 CrossRefGoogle Scholar
  3. Bastin L, Thomas CD (1999) The distribution of plant species in urban vegetation fragments. Landscape Ecol 14:493–507CrossRefGoogle Scholar
  4. Bates AJ, Sadler JP, Fairbrass AJ, Falk SJ, Hale JD, Matthews TJ (2011) Changing bee and hoverfly pollinator assemblages along an urban-rural gradient. PLoS ONE 6:e23459. doi: 10.1371/journal.pone.0023459 PubMedCrossRefGoogle Scholar
  5. Bayerisches Landesamt für Umwelt (ed) (2009) Stadtbiotopkartierung. Accessed 21 Feb 2012
  6. Bernhardt-Römermann M, Römermann C, Nuske R, Parth A, Klotz S, Schmidt W, Stadler J (2008) On the identification of the most suitable traits for plant functional trait analyses. Oikos 117:1533–1541. doi: 10.1111/j.0030-1299.2008.16776.x CrossRefGoogle Scholar
  7. Besnard AF (1866) Bayerns Flora Aufzählung der in Bayern diesseits und jenseits des Rheins wildwachsenden phanerogamischen Pflanzen, mit Angabe ihrer Standorte, Blüthezeit. der Linné’schen Klassen und der natürlichen Familien. Grubert, MunichGoogle Scholar
  8. Bohn U, Neuhäusl R, Gollub G, Hettwer C, Neuhäuslova Z, Schlüter H, Weber H (2003) Map of the natural vegetation of Europe 1: 2 500 000. Landwirtschafts verlag, MünsterGoogle Scholar
  9. Bräuniger C, Knapp S, Kühn I, Klotz S (2010) Testing taxonomic and landscape surrogates for biodiversity in an urban setting. Landscape Urban Plan 97:283–295. doi: 10.1016/j.landurbplan.2010.07.001 CrossRefGoogle Scholar
  10. Burton ML, Samuelson LJ, MacKenzie MD (2009) Riparian wood plant traits across an urban-rural land use gradient and implications for watershed function with urbanization. Landscape Urban Plan 90:42–55. doi: 10.1016/j.landurbplan.2008.10.005 CrossRefGoogle Scholar
  11. Burton ML, Samuelson LJ, Pan S (2005) Riparian woody plant diversity and forest structure along an urban-rural gradient. Urban Ecosyst 8:93–106. doi: 10.1007/s11252-005-1421-6 CrossRefGoogle Scholar
  12. Deutscher Wetterdienst München (2011) Metereological Station Nymphenburg. Accessed 21 Feb 2012
  13. Dolédec S, Chessel D, ter Braak CJF, Champely S (1996) Matching species traits to environmental variables: a new three-table ordination method. Environ Ecol Stat 3:143–166CrossRefGoogle Scholar
  14. Dray S, Chessel D, Thioulouse J (2003) Co-inertia analysis and the linking of ecological data tables. Ecology 84:3078–3089. doi: 10.1890/03-0178 CrossRefGoogle Scholar
  15. ESRI Inc. (2007) ArcGis 9.3. Environmental System Research Institute, RedlandsGoogle Scholar
  16. European Commission (2008) Directive 92/43/EEC on the consercation of natural habitats and of wild fauna and flora. Management of Natura 2000 habitats. 6210. Semi-natural dry grasslands and scrubland facies on calcareous substrates (Festuco-Brometalia). Accessed 21 Feb 2012
  17. European Environment Agency (1998) Europe’s encironnrent: the second assessment. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  18. Fattorini S (2011) Insect extinction by urbanization: a long term study in Rome. Biol Conserv 144:370–375. doi: 10.1016/j.biocon.2010.09.014 CrossRefGoogle Scholar
  19. Fetzer KD, Grottenthaler W, Hofmann B, Jerz H, Rückert G, Schmidt F, Wittmann O (1986) Standortkundliche Bodenkarte von Bayern 1:50.000. München-Augsburg und Umgebung. Erläuterungen. Bayerisches Geologisches Landesamt, MunichGoogle Scholar
  20. Garnier E, Lavorel S, Ansquer P et al (2007) Assessing the effects of land use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European sites. Ann Bot 99:967–985. doi: 10.1093/aob/mcl215 PubMedCrossRefGoogle Scholar
  21. Godefroid S, Koedam N (2007) Urban plant species patterns are highly driven by density and function of built up areas. Landscape Ecol 22:1227–1239. doi: 10.1007/s10890-007-9102-x CrossRefGoogle Scholar
  22. Gulezian PZ, Nyberg DW (2010) Distribution of invasive plants in a spatially structured urban landscape. Landscape Urban Plan 95:161–168. doi: 10.1016/j.landurbplan.2009.12.013 CrossRefGoogle Scholar
  23. Hahs AK, McDonnell MJ (2007) Composition of the plant community in remnant patches of grassy woodland along an urban–rural gradient in Melbourne, Australia. Urban Ecosyst 10:355–377. doi: 10.1007/s11252-007-0034-7 CrossRefGoogle Scholar
  24. Hennig EI, Ghazoul J (2011) Pollinating animals in the urban environment. Urban Ecosyst 13:137–150. doi: 10.1007/s11252-011-0202-7 Google Scholar
  25. Hill MO, Smith AJE (1976) Principal component analysis of taxonomic data with multi-state discrete characters. Taxon 25:249–255CrossRefGoogle Scholar
  26. Hill MO, Roy DB, Thompson K (2002) Hemeroby, urbanity and ruderality: bioindicators of disturbance and human impact. J Appl Ecol 39:708–720. doi: 10.1046/j.1365-2664.2002.00746.x CrossRefGoogle Scholar
  27. Hochberg Y (1988) A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75:800–802. doi: 10.1093/biomet/75.4.800 CrossRefGoogle Scholar
  28. Honnay O, Piessens K, Van Landuyt W, Hermy M, Gulinck H (2003) Satelite based land use and landscape complexity indices as predictors for regional plant species diversity. Landscape Urban Plan 63:241–250. doi: 10.1016/S0169-2046(02)00194-9 CrossRefGoogle Scholar
  29. Hope D, Gries C, Zhu W, Fagan WF, Redman CL, Grimm NB, Nelson AL, Martin C, Kinzig A (2003) Socioeconomics drive urban plant diversity. PNAS 100:8788–8792. doi: 10.1073/pnas.1537557100 PubMedCrossRefGoogle Scholar
  30. Kearns CA, Oliveras DM (2009) Environmental factors affecting bee diversity in urban and remote grassland plots in Boulder, Colorado. J Insect Conserv 13:655–665. doi: 10.1007/s10841-009-9215-4 CrossRefGoogle Scholar
  31. Kleyer M (2002) Validation of plant functional types across two contrasting landscapes. J Veg Sci 13:167–178. doi: 10.1111/j.1654-1103.2002.tb02036.x CrossRefGoogle Scholar
  32. Kleyer M, Bekker RM, Knevel IC et al (2008) The LEDA traitbase: a database of life-history traits of Northwest European flora. J Ecol 96:1266–1274. doi: 10.1111/j.1365-2745.2008.01430.x CrossRefGoogle Scholar
  33. Klotz S, Kühn I, Durka W (2002) BIOLFLOR—Eine Datenbank mit biologisch-ökologischen Merkmalen zur Flora von Deutschland. Schriftenreihe für Vegetationskunde 38, BonnGoogle Scholar
  34. Knapp S, Kühn I, Wittig R, Ozinga WA, Poschlod P, Klotz S (2008a) Urbanization causes shifts in species’ trait state frequencies. Preslia 80:375–388Google Scholar
  35. Knapp S, Kühn I, Moosbrugger V, Klotz S (2008b) Do protected areas in urban and rural landscapes differ in species diversity? Biodivers Conserv 17:1595–1612. doi: 10.1007/s10531-008-9369-5 CrossRefGoogle Scholar
  36. Kottmeier C, Biegert C, Corsmeier U (2007) Effects of urban land use on surface temperature in Berlin: case study. J Urban Plan Dev 133:128–137. doi: 10.1061/(ASCE)0733-9488(2007)133:2(128) CrossRefGoogle Scholar
  37. Kranz CA (1859) Uebersicht der Flora von München: enthaltend die in der Umgebung Münchens wildwachsenden und verwilderten Gefässpflanzen. Franz, MunichGoogle Scholar
  38. Kühn I, Brandl R, Klotz S (2004) The flora of German cities is naturally species rich. Evol Ecol Res 6:749–764Google Scholar
  39. Kowarik I (2008) On the role of alien non-native species in urban flora and vegetation. In: Marzluff J et al (eds) Urban ecology. An international perspective on the interaction between humans and nature. Springer, New York, pp 321–338. doi: 10.1007/978-0-387-73412-5_20 Google Scholar
  40. Kuttler W (2008) The urban climate—basic and applied aspects. In: Matzluff JM et al (eds) Urban Ecology. Springer, New York, pp 233–248. doi: 10.1007/978-0-387-73412-5_13 CrossRefGoogle Scholar
  41. Landolt E (2010) Flora indicativa. Ecological indicator values and biological attributes of the flora of Switzerland and the Alps. Haupt, Bern, Stuttgart, WienGoogle Scholar
  42. Larson DW, Matthes U, Kelly PE (2000) Cliff ecology. Pattern and process in cliff ecosystems. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  43. Lavorel S, Touzard B, Lebreton JD, Clément B (1998) Identifying functional groups for response to disturbance in an abandoned pasture. Acta Oecol 19:227–240. doi: 10.1016/S1146-609X(98)80027-1 CrossRefGoogle Scholar
  44. Legendre P, Legendre L (2012) Numerical ecology, 3rd edn. Elsevier, AmsterdamGoogle Scholar
  45. Lososová Z, Láníková D (2010) Differences in trait compositions between rocky natural and artificial habitats. J Veg Sci 21:520–530. doi: 10.1111/j.1654-1103.2009.01160.x CrossRefGoogle Scholar
  46. Lundholm JT, Marlin A (2006) Habitat origins and microhabitat preferences of urban plant species. Urban Ecosyst 9:139–159. doi: 10.1007/s11252-006-8587-4 CrossRefGoogle Scholar
  47. Marzluff JM, Ewing K (2001) Restoration of fragmented landscapes for the conservation of birds: a general framework and specific recommendations for urbanizing landscapes. Restor Ecol 9:280–292. doi: 10.1046/j.1526-100x.2001.009003280.x CrossRefGoogle Scholar
  48. McCune B, Mefford MJ (2010) PC-Ord. Multivariate analysis of ecological data. Version 6.0. MjM Software Design, Gleneden BeachGoogle Scholar
  49. McIntyre S, Lavorel S, Tremont RM (1995) Plant life-history attributes: their relationship to disturbance response in herbaceous vegetation. J Ecol 83:31–44CrossRefGoogle Scholar
  50. McKinney ML (2002) Urbanization, biodiversity and conservation. Bioscience 52:883–890. doi:10.1641/0006-3568(2002)052[0883:UBAC]2.0.CO;2Google Scholar
  51. McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127:247–260. doi: 10.1016/j.biocon.2005.09.005 CrossRefGoogle Scholar
  52. McKinney ML (2008) Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst 11:161–176. doi: 10.1007/s11252-007-0045-4 CrossRefGoogle Scholar
  53. Muratet A, Machon N, Jiguet F, Moret J, Porcher E (2007) The role of urban structures in the distribution of wasteland flora in the greater Paris area, France. Ecosystems 10:661–671. doi: 10.1007/s10021-007-9047-6 CrossRefGoogle Scholar
  54. Ostermann OP (1998) The need for management of nature conservation sites designated under Natura 2000. J Appl Ecol 35:968–973. doi: 10.1111/j.1365-2664.1998.tb00016.x CrossRefGoogle Scholar
  55. Pautasso M (2007) Scale dependence of the correlation between human population presence and vertebrate and plant species richness. Ecol Lett 10:16–24. doi: 10.1111/j.1461-0248.2006.00993.x PubMedCrossRefGoogle Scholar
  56. Poschlod P, Kleyer M, Jackel AK, Dannemann A, Tackenberg O (2003) BIOPOP—A database of plant traits and Internet application for nature conservation. Folia Geobot 38:263–271. doi: 10.1007/BF02803198 CrossRefGoogle Scholar
  57. R Development Core Team (2010) A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  58. Schleicher A, Biedermann R, Kleyer M (2011) Dispersal traits determine plant response to habitat connectivity in an urban landscape. Landscape Ecol 26:529–540. doi: 10.1007/s10980-011-9579-1 CrossRefGoogle Scholar
  59. Scheuerer M, Ahlmer W (2003) Rote Liste gefährdeter Gefäßpflanzen Bayerns mit regionalisierter Florenliste. Schriftenreihe des Bayerischen Landesamtes für Umweltschutz 165, AugsburgGoogle Scholar
  60. Schippers P, van Groenendael JM, Vleeshouwers LM, Hunt R (2001) Herbaceous plant strategies in disturbed habitats. Oikos 95:198–210. doi: 10.1034/j.1600-0706.2001.950202.x CrossRefGoogle Scholar
  61. Sendtner O (1854) Die Vegetationsverhältnisse Südbayerns nach den Grundsätzen der Pflanzengeographie und mit Bezugnahme auf die Landeskultur. Literarisch-artistische Anstalt, MunichGoogle Scholar
  62. Thompson K, Bakker JP, Bekker RM, Hodgson JG (1998) Ecological correlates of seed persistence in soil in the north-west European flora. J Ecol 86:163–169. doi: 10.1046/j.1365-2745.1998.00240.x CrossRefGoogle Scholar
  63. Thompson K, Austin KC, Smith RM, Warren PH, Angold PG, Gaston KJ (2003) Urban domestic gardens (I): putting small-scale plant diversity in context. J Veg Sci 14:71–78. doi: 10.1111/j.1654-1103.2003.tb02129.x CrossRefGoogle Scholar
  64. Vallet J, Daniel H, Beaujouan V, Rozé F (2008) Plant species response to urbanization: comparison of isolated woodland patches in two cities of North-Western France. Landscape Ecol 23:1205–1217. doi: 10.1007/s10980-008-9293-9 CrossRefGoogle Scholar
  65. Vallet J, Daniel H, Beaujouan V, Rozé F, Pavoine S (2010) Using biological traits to assess how urbanization filters plant species of small woodlands. Appl Veg Sci 13:412–424. doi: 10.1111/j.1654-109X.2010.01087.x CrossRefGoogle Scholar
  66. WallisDeVries MF, Poschlod P, Willems JH (2002) Challenges for the conservation of calcareous grasslands in northwestern Europe: integrating the requirements of flora and fauna. Biol Conserv 104:265–273. doi: 10.1016/S0006-3207(01)00191-4 CrossRefGoogle Scholar
  67. Westermann JR, von der Lippe M, Kowarik I (2011) Seed traits, landscape and environmental parameters as predictors of species occurrence in fragmented urban railway habitats. Basic Appl Ecol 12:29–39. doi: 10.1016/j.baae.2010.11.006 CrossRefGoogle Scholar
  68. Williams NSG, Morgan JW, McCarthy MA, McDonnell MD (2006) Local extinction of grassland plants; the landscape matrix is more important than patch attributes. Ecology 87:3000–3006. doi:10.1890/0012-9658(2006)87[3000:LEOGPT]2.0.CO;2Google Scholar
  69. Williams NSG, Schwartz MW, Vesk PA, McCarthy MA, Hahs AK, Clemants SE, Corlett RT, Norton BA, Thompson K, McDonnell MD (2008) A conceptual framework for predicting the effects of urban environments on floras. J Ecol 97:4–9. doi: 10.1111/j.1365-2745.2008.01460.x CrossRefGoogle Scholar
  70. Wisskirchen R, Haeupler H (1998) Standardliste der Farn- und Blütenpflanzen Deutschlands. Ulmer, StuttgartGoogle Scholar
  71. Wittmann S (2007) Die Entwicklung der Wald- und Heideflächen im Münchner Norden zwischen 1800 und 2000. Diploma Thesis, Fachhochschule München. Accessed 30 June 2012
  72. Young CH, Jarvis PJ (2001) Measuring urban habitat fragmentation: an example from the Black Country, UK. Landscape Ecol 16:643–658CrossRefGoogle Scholar
  73. Zhang XY, Friedl MA, Schaaf CB, Strahler AH (2004) Climate controls on vegetation phenological patterns in northeren mid- and high latidudes inferred from MODIS data. Glob Change Biol 10:1133–1145. doi: 10.1111/j.1365-2486.2004.00784.x CrossRefGoogle Scholar
  74. Zipperer WC, Guntenspergen GR (2009) Vegetation composition and structure of forest patches along urban–rural gradients. In: McDonnell MJ, Hahs AK, Breuste JH (eds) Ecology of cities and towns: A comparative approach. Cambridge University Press, Cambridge, pp 274–286CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Restoration Ecology, Center of Life and Food Sciences Weihenstephan, Technische Universität MünchenFreisingGermany
  2. 2.Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-WittenbergHalle (Saale)Germany

Personalised recommendations