Biodiversity and Conservation

, Volume 22, Issue 2, pp 405–424 | Cite as

The effect of habitat fragmentation and abiotic factors on fen plant occurrence

  • Hester Soomers
  • Derek Karssenberg
  • Jos T. A. Verhoeven
  • Pita A. Verweij
  • Martin J. Wassen
Original Paper


Human landscape modification has led to habitat fragmentation for many species. Habitat fragmentation, leading to isolation, decrease in patch size and increased edge effect, is observed in fen ecosystems that comprise many endangered plant species. However, until now it has remained unclear whether habitat fragmentation per se has a significant additional negative effect on plant species persistence, besides habitat loss and degradation. We investigated the relative effect of isolation, habitat size, and habitat edge compared to the effect of habitat degradation by including both ‘fragmentation variables’ and abiotic variables in best subsets logistic regression analyses for six fen-plant species. For all but one species, besides abiotic variables one or more variables related to fragmentation were included in the regression model. For Carex lasiocarpa, isolation was the most important factor limiting species distribution, while for Juncus subnodulosus and Menyanthes trifoliata, isolation was the second most important factor. The effect of habitat size differed among species and an increasing edge had a negative effect on the occurrence of Carex lasiocarpa and Pedicularis palustris. Our results clearly show that even if abiotic conditions are suitable for certain species, isolation of habitat patches and an increased habitat edge caused by habitat fragmentation affect negatively the viability of characteristic fen plant species. Therefore, it is important not only to improve habitat quality but also to consider spatial characteristics of the habitat of target species when deciding on plant conservation strategies in intensively used landscapes, such as fen areas in Western Europe and North America.


Dispersal limitation Habitat area Habitat degradation Habitat edge Isolation Logistic regression 



The authors thank the Province of Utrecht, the Province of Noord-Holland, and Vereniging Natuurmonumenten for providing data and Hans de Mars for collecting data; Maarten Zeylmans van Emmichoven for his advice on GIS procedures and Rogier Donders for his advice on statistics. Hester Soomers’ contribution was funded by the Utrecht Centre of Geosciences.


  1. Bini LM, Diniz-Filho JAF, Rangel TFLVB, Akre TSB, Albaladejo RG, Albuquerque FS, Aparicio A, Araújo MB, Baselga A, Beck J, Bellocq MI, Böhning-Gaese K, Borges PAV, Castro-Parga I, Chey VK, Chown SL, De Marco P Jr, Dobkin DS, Ferrer-Castán D, Field R, Filloy J, Fleishman E, Gómez JF, Hortal J, Iverson JB, Kerr JT, Kissling WD, Kitching IJ, León-Cortés JL, Lobo JM, Montoya D, Morales-Castilla I, Moreno JC, Oberdorff T, Olalla-Tárraga MA, Pausas JG, Qian H, Rahbek C, Rodríguez MA, Rueda M, Ruggiero A, Sackmann P, Sanders NJ, Terribile LC, Vetaas OR, Hawkins BA (2009) Coefficient shifts in geographical ecology: an empirical evaluation of spatial and non-spatial regression. Ecography 32:193–204CrossRefGoogle Scholar
  2. Bouman F, Boesewinkel D, Bregman R, Devente N, Oostermeijer G (2000) Verspreiding van. zaden. KNNV Uitgeverij, UtrechtGoogle Scholar
  3. Catellier DJ, Hannan PJ, Murray DM, Addy CL, Conway TL, Yang S, Rice JC (2005) Imputation of missing data when measuring physical activity by accelerometry. Med Sci Sports Exerc 37:S555–S562PubMedCrossRefGoogle Scholar
  4. Collins CD, Holt RD, Foster BL (2009) Patch size effects on plant species decline in an experimentally fragmented landscape. Ecology 90:2577–2588PubMedCrossRefGoogle Scholar
  5. De Mars H (1996) Chemical and physical dynamics of fen hydro-ecology, p. 167. Rijksuniversiteit Utrecht, UtrechtGoogle Scholar
  6. De Veaux RD, Ungar LH (1994) Multicollinearity: a tale of two nonparametric regressions. In: Cheeseman P, Oldford RW (eds) Selecting models from data: AI and statistics IV. Springer, New York, pp 293–302Google Scholar
  7. Diniz-Filho JA, Bini LM, Hawkins BA (2003) Spatial autocorrelation and red herrings in geographical ecology. Glob Ecol Biogeogr 12:53–64CrossRefGoogle Scholar
  8. Draper NR, Smith H (1998) Applied regression analysis, 3rd edn. Wiley, New YorkGoogle Scholar
  9. Ehrlen J, Münzbergová Z, Diekmann M, Eriksson O (2006) Long-term assessment of seed limitation in plants: results from an 11-year experiment. J Ecol 94:1224–1232CrossRefGoogle Scholar
  10. ESRI (2006) ArcGIS 9.1. Environmental Systems Research Institute, CaliforniaGoogle Scholar
  11. Ewers RM, Didham RK (2005) Confounding factors in the detection of species responses to 21 habitat fragmentation. Biol Rev 81:117–142PubMedCrossRefGoogle Scholar
  12. Ewers RM, Thorpe S, Didham RK (2007) Synergistic interactions between edge and area effects in a heavily fragmented landscape. Ecology 88:96–106PubMedCrossRefGoogle Scholar
  13. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515CrossRefGoogle Scholar
  14. Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140CrossRefGoogle Scholar
  15. Hanski I (1999) Metapopulation ecology. Oxford University Press, OxfordGoogle Scholar
  16. Hawkins BA, Diniz-Filho JAF, Mauricio Bini L, De Marco P, Blackburn TM (2007) Red herrings revisited: spatial autocorrelation and parameter estimation in geographical ecology. Ecography 30:375–384Google Scholar
  17. Helm A, Hanski I, Partel M (2006) Slow response of plant species richness to habitat loss and fragmentation. Ecol Lett 9:72–77Google Scholar
  18. Honnay O, Jacquemyn H (2007) Susceptibility of common and rare plant species to the genetic consequences of habitat fragmentation. Conserv Biol 21:823–831PubMedCrossRefGoogle Scholar
  19. Johansson ME, Nilsson C, Nilsson E (1996) Do rivers function as corridors for plant dispersal? J Veg Sci 7:593–598CrossRefGoogle Scholar
  20. King JE (2003) Running a best-subsets logistic regression: an alternative to stepwise ethods. Edu Psychol Meas 63:392–403CrossRefGoogle Scholar
  21. Kleyer MR, Bekker M, Knevel IC, Bakker JP, Thompson K, Sonnenschein M, Poschlod P, van Groenendael JM, Klimes L, Klimesová J, Klotz S, Rusch GM, Hermy M, Adriaens D, Boedeltje G, Bossuyt B, Dannemann A, Endels P, Götzenberger L, Hodgson JG, Jackel A-K, Kühn I, Kunzmann D, Ozinga WA, Römermann C, Stadler M, Schlegelmilch J, Steendam HJ, Tackenberg O, Wilmann B, Cornelissen JHC, Eriksson O, Garnier E, Peco B (2008) The LEDA traitbase: a database of life-history traits of the northwest European flora. J Ecol 96:1266–1274CrossRefGoogle Scholar
  22. Lamers LPM, Smolders AJP, Roelofs JGM (2002) The restoration of fens in The Netherlands. Hydrobiologia 478:107–130CrossRefGoogle Scholar
  23. Laurance WF, Yensen E (1991) Predicting the impacts of edge effects in fragmented habitats. Biol Conserv 55:77–92CrossRefGoogle Scholar
  24. Legendre P, Legendre L (1998) Numerical ecology. Elsevier, Amsterdam 22Google Scholar
  25. Lehmann H, Neidhart HV, Schlenkermann G (1984) Ultrastructural investigations on sporogenesis in Equisetum fluviatile. Protoplasma 123:38–47Google Scholar
  26. Leimu R, Mutikainen P, Koricheva J, Fischer M (2006) How general are positive relationships between plant population size, fitness and genetic variation? J Ecol 94:942–952CrossRefGoogle Scholar
  27. Lepš J, Šmilauer P (2007) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, CambridgeGoogle Scholar
  28. Ouborg NJ, Vergeer P, Mix C (2006) The rough edges of the conservation genetics paradigm for plants. J Ecol 94:1233–1248CrossRefGoogle Scholar
  29. Ozinga WA, Schaminee JHJ, Bekker RM, Bonn S, Poschlod P, Tackenberg O, Bakker J, van Groenendael JM (2005) Predictability of plant species composition from environmental conditions is constrained by dispersal limitation. Oikos 108:555–561CrossRefGoogle Scholar
  30. Ozinga WA, Römermann C, Bekker RM, Prinzing A, Tamis WLM, Schaminée JHJ, Hennekens SM, Thompson K, Poschlod P, Kleyer M, Bakker JP, van Groenendael JM (2009) Dispersal failure contributes to plant losses in NW Europe. Ecol Lett 12:66–74PubMedCrossRefGoogle Scholar
  31. Provincie Utrecht (2003) Handleiding 2003, Ecologisch Onderzoek, onderdeel Flora en Vegetatie. Sector Ecologisch onderzoek en Groene regelgeving, UtrechtGoogle Scholar
  32. Pueyo Y, Alados CL (2007) Effects of fragmentation, abiotic factors and land use on vegetation recovery in a semi-arid Mediterranean area. Basic Appl Ecol 8:158–170CrossRefGoogle Scholar
  33. Rangel TFLVB, Diniz-Filho JAF, Bini LM (2006) Towards an integrated computational tool for spatial analysis in macroecology and biogeography. Glob Ecol Biogeogr 15(4):321–327Google Scholar
  34. Runhaar J, vanGool CR, Groen CLG (1996) Impact of hydrological changes on nature conservation areas in The Netherlands. Biol Conserv 76:269–276CrossRefGoogle Scholar
  35. Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation—a review. Conserv Biol 5:18–32CrossRefGoogle Scholar
  36. Schaminée JHJ, Weeda EJ, Westhoff V (1995) De Vegetatie van Nederland. Deel 2. Plantengemeenschappen van wateren, moerassen en natte heiden. Opulus Press, Uppsala/LeidenGoogle Scholar
  37. Schmidt K, Jensen K (2000) Genetic structure and AFLP variation of remnant populations in the rare plant Pedicularis palustris (Scrophulariaceae) and its relation to population size and reproductive components. Am J Bot 87(678–689):23Google Scholar
  38. Schot PP, Wassen MJ (1993) Calcium concentrations in wetland groundwater in relation to water sources and soil conditions in the recharge area. J Hydrol 141:197–217CrossRefGoogle Scholar
  39. Schot PP, Barendregt A, Wassen MJ (1988) Hydrology of the wetland Naardermeer: influence of the surrounding area and impact on vegetation. Agric Water Manag 14(1–4):459–470CrossRefGoogle Scholar
  40. Sjors H, Gunnarsson U (2002) Calcium and pH in North and Central Swedish mire waters. J Ecol 90:650–657CrossRefGoogle Scholar
  41. Smith AC, Koper N, Francis CM, Fahrig L (2009) Confronting collinearity: comparing methods for disentangling the effects of habitat loss and fragmentation. Landscape Ecol 24:1271–1285CrossRefGoogle Scholar
  42. Soomers H, Winkel DN, Du Y, Wassen MJ (2010) The dispersal and deposition of hydrochorous plant seeds in drainage ditches. Freshw Biol 55:2032–2046CrossRefGoogle Scholar
  43. Soons MB (2006) Wind dispersal in freshwater wetlands: knowledge for conservation and restoration. Appl Veg Sci 9:271–278CrossRefGoogle Scholar
  44. Soons MB, Heil GW (2002) Reduced colonization capacity in fragmented populations of wind- dispersed grassland forbs. J Ecol 90:1033–1043CrossRefGoogle Scholar
  45. Suding KN, Collins SL, Gough L, Clark C, Cleland EE, Gross KL, Milchunas DG, Pennings S (2005) Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proc Natl Acad Sci USA 102:4387–4392PubMedCrossRefGoogle Scholar
  46. Tilman D, May RM, Lehman CL, Nowak MA (1994) Habitat destuction and the extinction debt. Nature 371:65–66CrossRefGoogle Scholar
  47. Topografische Dienst (2005) Topografische ondergrond (c), EmmenGoogle Scholar
  48. Van den Broek T, van Diggelen R, Bobbink R (2005) Variation in seed buoyancy of species in wetland ecosystems with different flooding dynamics. J Veg Sci 16:579–586Google Scholar
  49. Van der Meijden R (1996) Heukels’ Flora van Nederland Wolters-Noordhoff bv. GroningenGoogle Scholar
  50. Van Diggelen R, Molenaar WJ, Kooijman AM (1996) Vegetation succession in a floating mire in relation to management and hydrology. J Veg Sci 7:809–820.Google Scholar
  51. Van der Meijden R, van Duuren L, Weeda EJ, Plate CL (1991) Standaardlijst van de Nederlandse Flora 1990. Gorteria 17:75–127Google Scholar
  52. Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s ecosystems. Science 277:494–499CrossRefGoogle Scholar
  53. Wassen MJ, Barendregt A (1992) Topographic position and water chemistry of fens in a dutch river plain. J Veg Sci 3:447–456CrossRefGoogle Scholar
  54. Wassen MJ, Barendregt A, Bootsma MC, Schot PP (1989) Groundwater chemistry and vegetation of gradients from rich fen to poor fen in the Naardermeer (The Netherlands). Vegetatio 79:117–132CrossRefGoogle Scholar
  55. Wassen MJ, Barendregt A, Schot PP, Beltman B (1990a) Dependency of local mesotrophic fens on a regional groundwater flow system in a poldered river plain in The Netherlands. Landscape Ecol 5:21–38CrossRefGoogle Scholar
  56. Wassen MJ, Barendregt A, Palczynski A, De Smidt JT, De Mars H (1990b) The relationship between fen vegetation gradients, groundwater flow and flooding in an undrained valley mire at Biebrza, Poland. J Ecol 78:1106–1122CrossRefGoogle Scholar
  57. Wassen MJ, Barendregt A, Palczynski A, De Smidt JT, De Mars H (1992) Hydro-ecological analysis of the Biebrza mire (Poland). Wetlands Ecol Manage 2(3):119–134CrossRefGoogle Scholar
  58. Wassen MJ, Olde Venterink H, Lapshina ED, Tanneberger F (2005) Endangered plants persist under phosphorus limitation. Nature 437:547–550PubMedCrossRefGoogle Scholar
  59. Wassen MJ, Okruszko T, Kardel I, Chormanski J, Swiatek D, Mioduszewski W, Bleuten W, Querner EP, El Kahloun M, Batelaan O, Meire P (2006) Eco-hydrological functioning of the Biebrza Wetlands; lessons for the conservation and restoration of deteriorated wetlands. In: Bobbink R, Beltman B, Verhoeven JTA, Whigham D (eds) Wetlands functioning, biodiversity conservation and restoration. Springer, Heidelberg, pp 285–310Google Scholar
  60. Whittaker RJ, Nogués-Bravo D, Araújo MB (2007) Geographical gradients of species richness: a test of the water-energy conjecture of Hawkins et al. (2003) using European data for five taxa. Glob Ecol Biogeogr 16:76–89CrossRefGoogle Scholar
  61. Zonneveld JIS (1980) Tussen de bergen en de zee, 5th edn. Bohn, Scheltema and HolkemaGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Hester Soomers
    • 1
    • 2
  • Derek Karssenberg
    • 3
  • Jos T. A. Verhoeven
    • 4
  • Pita A. Verweij
    • 5
  • Martin J. Wassen
    • 1
  1. 1.Environmental Sciences, Copernicus Institute of Sustainable Development, Faculty of GeosciencesUtrecht UniversityUtrechtThe Netherlands
  2. 2.Vereniging Natuurmonumenten, Regio Zuid-Holland en ZeelandRotterdamThe Netherlands
  3. 3.Department of Physical Geography, Faculty of GeosciencesUtrecht UniversityUtrechtThe Netherlands
  4. 4.Ecology and Biodiversity, Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands
  5. 5.Energy and Resources, Faculty of Geosciences, Copernicus Institute of Sustainable DevelopmentUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations