Biodiversity and Conservation

, Volume 22, Issue 1, pp 77–92 | Cite as

Short-term effects of reduced white-tailed deer density on insect communities in a strongly overbrowsed boreal forest ecosystem

  • Pierre-Marc Brousseau
  • Christian HébertEmail author
  • Conrad Cloutier
  • Steeve D. Côté
Original Paper


Browsing by overabundant deer modifies plant communities and alters forest regeneration, which can indirectly impact associated insect fauna. We tested the hypothesis that the response of insect communities to changes in deer abundance should depend on the strength of their association with plants, which we considered as a key functional trait. Seven years after a deer density control experiment was established in partly harvested forests on Anticosti Island (Quebec, Canada), we evaluated the effects of reducing white-tailed deer (Odocoileus virginianus) density from >20 down to 15, 7.5 and 0 deer km−2, on four insect taxa representing different levels of dependence on plants. As predicted by our hypothesis, the sensitivity of insect taxa to deer density decreased along a gradient representing their degree of association with plants. Carabidae remained unaffected, while Apoidea and Syrphidae communities differed between uncontrolled and reduced deer densities, but not as clearly as for Lepidoptera. As expected, insect communities responded faster in harvested than in forested areas because vegetation changes more rapidly in open habitats. For most insect taxa, dominant species were the most strongly affected by deer density reduction, but it was clearly stronger for predator taxa (Syrphidae and Carabidae). A fast recovery of rare species was observed for macro Lepidoptera. Reducing deer density down to 15 deer km−2 is sufficient to restore insect diversity on Anticosti Island, but it is unlikely to be efficient in all situations, particularly when competing tree regeneration is firmly established.


Functional traits Restoration Perturbation Dominance Rare species 



Our research was financed by the Natural Sciences and Engineering Research Council of Canada (NSERC), Produits forestiers Anticosti Inc. (PFA), Natural Resources Canada (NRCan) and Université Laval. We would like to thank M. Poulin, S. Pellerin and M. Bachand for vegetation data; N. Giasson for help in field work and Y. Paiement for help in laboratory work. We also thank Y. Dubuc for technical assistance and G. Pelletier for his taxonomic expertise, both from NRCan and S. de Bellefeuille from the NSERC-Produits forestiers Anticosti Industrial Research Chair for logistical assistance. We are grateful to Y. Bousquet from the Eastern Cereal and Oilseed Research Center in Ottawa for confirming identification of Carabidae and G. Daigle of the Département de Mathématiques et de Statistiques at Université Laval and E. Azeria from NRCan for statistical advice. We also thank I. Lamarre and P. Cheers from NRCan for editing the manuscript.


  1. Allombert S, Stockton S, Martin J-L (2005) A natural experiment on the impact of overabundant deer on forest invertebrates. Conserv Biol 19(6):1917–1929CrossRefGoogle Scholar
  2. Baines D, Sage RB, Baines MM (1994) The implications of red deer grazing to ground vegetation and invertebrate communities of Scottish native pinewoods. J Appl Ecol 31(4):776–783CrossRefGoogle Scholar
  3. Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89(9):2623–2632PubMedCrossRefGoogle Scholar
  4. Brown VK, Southwood TRE (1983) Trophic diversity, niche breadth and generation times of exopterygote insects in a secondary succession. Oecologia 56(2–3):220–225CrossRefGoogle Scholar
  5. Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L (2001) Introduction to distance sampling: estimating abundance of biological populations. Oxford University Press, New YorkGoogle Scholar
  6. Chase JM, Leibold MA (2003) Ecological niches: Linking classical and contemporary approaches. The University of Chicago Press, Chicago, ILGoogle Scholar
  7. Collins MD, Simberloff D (2009) Rarefaction and nonrandom spatial dispersion patterns. Environ Ecol Stat 16(1):89–103. doi: 10.1007/s10651-007-0051-y CrossRefGoogle Scholar
  8. Côté SD (2005) Extirpation of a large black bear population by introduced white-tailed deer. Conserv Biol 19(5):1668–1671. doi: 10.1111/j.1523-1739.2005.00252.x CrossRefGoogle Scholar
  9. Côté SD, Rooney TP, Tremblay J-P, Dussault C, Waller DM (2004) Ecological impacts of deer overabundance. Annu Rev Ecol Evol Syst 35:113–147. doi: 10.1146/annurev.ecolsys.35.021103.105725 CrossRefGoogle Scholar
  10. Dray S, Legendre P, Blanchet FG (2007) packfor: forward selection with permutation. R package version 0.0-7. Available: Accessed 15 March 2010
  11. Fleiss JL, Levin B, Paik MC (2003) Statistical methods for rates and proportions, 3rd edn. John Wiley & Sons Inc., New YorkCrossRefGoogle Scholar
  12. Foote BA (1991) Syrphidae. In: Stehr FW (ed) Immature insects, vol 2, Kendall/Hunt Publishing Company Dubuque, IA, pp 792–795Google Scholar
  13. Gibson CWD, Brown VK, Losito L, McGavin GC (1992) The response of invertebrate assemblies to grazing. Ecography 15(2):166–176CrossRefGoogle Scholar
  14. Greenstone MH (1984) Determinants of web spider species-diversity: vegetation structural diversity vs. prey availability. Oecologia 62(3):299–304CrossRefGoogle Scholar
  15. Gressitt JL, Gressitt MK (1962) An improved Malaise trap. Pac Insects 4(1):87–90Google Scholar
  16. Hébert C, Jobin L (2001) Impact du cerf de Virginie sur la biodiversité des forêts de l’île d’Anticosti: Les insectes comme indicateurs. Nat Can 125(3):96–107Google Scholar
  17. Hébert C, Jobin LJ, Fréchette M, Pelletier G, Coulombe C, Germain C, Auger M (2000) An efficient pit-light trap to study beetle diversity. J Ins Conserv 4:191–202CrossRefGoogle Scholar
  18. Hirao T, Murakami M, Kashizaki A (2009) Importance of the understory stratum to entomofaunal diversity in a temperate deciduous forest. Ecol Res 24:263–272CrossRefGoogle Scholar
  19. Jauker F, Diekötter T, Schwarzbach F, Wolters V (2009) Pollinator dispersal in an agricultural matrix: opposing responses of wild bees and hoverflies to landscape structure and distance from main habitat. Landsc Ecol 24(4):547–555. doi: 10.1007/s10980-009-9331-2 CrossRefGoogle Scholar
  20. Jobin L, Coulombe C (1992) The Luminoc insect trap. Forestry Canada, Inf. Leaf. LFC-26, QuébecGoogle Scholar
  21. Jobin L, Desaulniers R (1981) Results of aerial spraying in 1972 and 1973 to control the eastern hemlock looper (Lambdina fiscellaria fiscellaria (Guen.)) on Anticosti Island. Can. For. Serv., Laurentian For. Centre, Inf. Rep. LAU-X-49E, QuebecGoogle Scholar
  22. Kruess A, Tscharntke T (2002) Grazing intensity and the diversity of grasshoppers, butterflies, and trap-nesting bees and wasps. Conserv Biol 16(6):1570–1580CrossRefGoogle Scholar
  23. Lefort S (2002) Habitat hivernal du cerf de Virginie (Odocoileus virginianus) à l’île d’Anticosti. Université Laval, QuébecGoogle Scholar
  24. Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280CrossRefGoogle Scholar
  25. Legendre P, Legendre L (1998) Numerical Ecology, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  26. Littlewood NA, Pakeman RJ, Woodin SJ (2009) Isolation of habitat patches limits colonisation by moorland Hemiptera. J Ins Conserv 13(1):29–36. doi: 10.1007/s10841-007-9114-5 CrossRefGoogle Scholar
  27. Martin J-L, Stockton SA, Allombert S, Gaston AJ (2010) Top-down and bottom-up consequence of unchecked ungulate browsing on plant and animal diversity in temperate forests: lesson from a deer introduction. Biol Invasions 12:353–371CrossRefGoogle Scholar
  28. McShea WJ (2000) The influence of acorn crops on annual variation in rodent and bird populations. Ecology 81(1):228–238CrossRefGoogle Scholar
  29. McShea WJ, Rappole JH (2000) Managing the abundance and diversity of breeding bird populations through manipulation of deer populations. Conserv Biol 14(4):1161–1170CrossRefGoogle Scholar
  30. Melis C, Buset A, Aarrestad PA, Hanssen O, Meisingset EL, Andersen R, Moksnes A, Røskaft E (2006) Impact of red deer Cervus elaphus grazing on bilberry Vaccinium myrtillus and composition of ground beetle (Coleoptera, Carabidae) assemblage. Biodivers Conserv 15(6):2049–2059. doi: 10.1007/s10531-005-2005-8 CrossRefGoogle Scholar
  31. Melis C, Sundby M, Andersen R, Moksnes A, Pedersen B, Røskaft E (2007) The role of moose Alces alces L. in boreal forest the effect on ground beetles (Coleoptera, Carabidae) abundance and diversity. Biodivers Conserv 16(5):1321–1335. doi: 10.1007/s10531-005-6230-y CrossRefGoogle Scholar
  32. Miyashita T, Takada M, Shimazaki A (2004) Indirect effects of herbivory by deer reduce abundance and species richness of web spiders. Écoscience 11(1):74–79Google Scholar
  33. Oksanen J, Kindt R, Legendre P, O’Hara B, Simpson GL, Solymos P, Steven MHH, Wagner H (2009) The vegan library: Community ecology package. Available: Accessed 21 Dec 2010
  34. Potvin F, Breton L (2005) Testing 2 aerial survey techniques on deer in fenced enclosures - visual double-counts and thermal infrared sensing. Wildl Soc Bull 33(1):317–325CrossRefGoogle Scholar
  35. Potvin F, Beaupré P, Laprise G (2003) The eradication of balsam fir stands by white-tailed deer on Anticosti Island, Québec: a 150-year process. Écoscience 10(4):487–495Google Scholar
  36. Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  37. Rainio J, Niemelä J (2003) Ground beetles (Coleoptera : Carabidae) as bioindicators. Biodivers Conserv 12(3):487–506CrossRefGoogle Scholar
  38. Rooney TP, Waller DM (2003) Direct and indirect effects of white-tailed deer in forest ecosystems. For Ecol Manag 181(1–2):165–176. doi: 10.1016/s0378-1127(03)00130-0 CrossRefGoogle Scholar
  39. Rossi J-P (2011) rich: an R package to analyse species richness. Diversity 3(1):112–120CrossRefGoogle Scholar
  40. Stewart AJA (2001) The impact of deer on lowland woodland invertebrates: a review of the evidence and priorities for future research. Forestry 74(3):259–270CrossRefGoogle Scholar
  41. Suominen O, Danell K (2006) Impacts of large herbivores on other fauna. In: Danell K, Bergstrom R, Duncan P, Pastor J (eds) Large Herbivore Ecology. Cambridge University Press, Cambridge, Ecosystem Dynamics and Conservation, pp 383–412CrossRefGoogle Scholar
  42. Suominen O, Niemelä J, Martikainen P, Niemelä P, Kojola I (2003) Impact of reindeer grazing on ground-dwelling Carabidae and Curculionidae assemblages in Lapland. Ecography 26(4):503–513CrossRefGoogle Scholar
  43. Takada M, Baba YG, Yanagi Y, Terada S, Miyashita T (2008) Contrasting responses of web-building spiders to deer browsing among habitats and feeding guilds. Environ Entomol 37(4):938–946PubMedCrossRefGoogle Scholar
  44. Thomas L, Buckland ST, Rexstad EA, Laake JL, Strindberg S, Hedley SL, Bishop JRB, Marques TA, Burnham KP (2010) Distance software: design and analysis of distance sampling surveys for estimating population size. J Appl Ecol 47:5–14PubMedCrossRefGoogle Scholar
  45. Tremblay J-P, Huot J, Potvin F (2006) Divergent nonlinear responses of the boreal forest field layer along an experimental gradient of deer densities. Oecologia 150(1):78–88. doi: 10.1007/s00442-006-0504-2 PubMedCrossRefGoogle Scholar
  46. Tremblay J-P, Huot J, Potvin F (2007) Density-related effects of deer browsing on the regeneration dynamics of boreal forests. J Appl Ecol 44(3):552–562CrossRefGoogle Scholar
  47. Vázquez DP, Simberloff D (2003) Changes in interaction biodiversity induced by an introduced ungulate. Ecol Lett 6(12):1077–1083. doi: 10.1046/j.1461-0248.2003.00534.x CrossRefGoogle Scholar
  48. Vázquez DP, Simberloff D (2004) Indirect effects of an introduced ungulate on pollination and plant reproduction. Ecol Monogr 74(2):281–308CrossRefGoogle Scholar
  49. Watson A (1983) Eighteenth century deer numbers and pine regeneration near Braemar. Scotland. Biol Conserv 25(4):289–305Google Scholar

Copyright information

© Her Majesty the Queen in Right of Canada 2012

Authors and Affiliations

  • Pierre-Marc Brousseau
    • 1
  • Christian Hébert
    • 1
    • 2
    Email author
  • Conrad Cloutier
    • 1
  • Steeve D. Côté
    • 1
    • 3
  1. 1.Département de biologieChaire de Recherche Industrielle CRSNG-Produits forestiers Anticosti, Université LavalQuébecCanada
  2. 2.Natural Resources Canada, Canadian Forest Service, Laurentian Forestry CentreQuébecCanada
  3. 3.Centre d’études nordiques, Université LavalQuébecCanada

Personalised recommendations