Advertisement

Biodiversity and Conservation

, Volume 22, Issue 5, pp 1115–1131 | Cite as

Rising temperatures explain past immigration of the thermophilic oak-inhabiting beetle Coraebus florentinus (Coleoptera: Buprestidae) in south-west Germany

  • Jörn Buse
  • Eva Maria Griebeler
  • Manfred Niehuis
Original Paper

Abstract

Global warming enables the immigration of species previously absent from a given region. Coraebus florentinus (Coleoptera: Buprestidae) is a beetle with a Mediterranean distribution that has expanded its northern range margin northwards within the last 30 years. It develops in branches and shoots of oak (Quercus spp.) and is considered a pest in Mediterranean countries. By modelling the current spatial distribution of C. florentinus using three independent modelling approaches (generalised linear models, boosted regression trees, maximum entropy modelling) we identified abiotic factors which explain its current spatial distribution (1991–1999) in south-west Germany and reconstructed its immigration into Germany since 1950. All modelling approaches suggest that monthly maximum temperatures determined the range margin of the species in south-west Germany from 1991 to 1999. Occurrence probabilities increased exponentially with mean maximum temperatures higher than 10 °C in March and 22 °C in June. Mean precipitation in May also seems to be important for the species occurrence, particularly in regions where oaks grow on poor sandy soil; however, this generally plays a minor role. All of these environmental conditions are linked to higher reproduction of C. florentinus on oaks in warm and dry habitats, as reported from southern Europe. We show that climatic conditions for the beetle have improved significantly in south-west Germany since 1950, which is most likely the reason for the northward shift of its range margin. Our modelling results suggest a further range expansion of the beetle in Central Europe.

Keywords

Climate change Logistic regression Boosted regression trees MaxEnt Forests Saproxylic beetles 

Notes

Acknowledgments

This study was funded as part of the project “Klima- und Landschaftswandel in Rheinland-Pfalz (KlimLandRP)” run by the “Ministerium für Umwelt, Forsten und Verbraucherschutz” of Rhineland-Palatinate, Germany. Many thanks go to Franz Badeck for his support with respect to the use of climate data from the TKCLIM-database. Soil data were kindly provided by the “Bundesanstalt für Geowissenschaften und Rohstoffe”. We thank Christophe Bouget, Hervé Brustel, Benjamin Calmont, Gianfranco Curletti, Jakub Horak, Marcos Méndez, and Louis-Michel Nageleisen for providing record data and general information on the spatial distribution of the beetle.

References

  1. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684CrossRefGoogle Scholar
  2. Altmoos M, Henle K (2010) Relevance of multiple spatial scales in habitat models: a case study with amphibians and grasshoppers. Acta Oecol 36:548–560CrossRefGoogle Scholar
  3. Augustin NH, Mugglestone MA, Buckland ST (1996) An autologistic model for the spatial distribution of wildlife. J Appl Ecol 33:339–347CrossRefGoogle Scholar
  4. Badeck F-W, Pompe S, Kühn I, Glauer A (2008) Wetterextreme und Artenvielfalt. Zeitlich hochauflösende Klimainformationen auf dem Messtischblattraster und für Schutzgebiete in Deutschland. Naturschutz und Landschaftsplanung 40:343–345Google Scholar
  5. Battisti A, Stastny M, Buffo E, Larsson S (2006) A rapid altitudinal range expansion in the pine processionary moth produced by the 2003 climatic anomaly. Glob Chang Biol 12:662–671CrossRefGoogle Scholar
  6. Brechtel F, Kostenbader H (2002) Die Pracht- und Hirschkäfer Baden-Württembergs. Ulmer, StuttgartGoogle Scholar
  7. Brechtel F, Niehuis M (2010) Der Florentiner Prachtkäfer—Coraebus florentinus (Hbst., 1801)—in Rheinland-Pfalz (Insecta: Coleoptera: Buprestidae). Fauna Flora Rheinland-Pfalz 11:1117–1124Google Scholar
  8. Brechtel F, Ehrmann R, Detzel P (1996) Zum Vorkommen der Gottesanbeterin Mantis religiosa (Linné, 1758) in Deutschland. Carolinea 54:73–90Google Scholar
  9. Bregant E, Fritz JJ, Walluschek-Wallfeld H (1999) Bemerkenswerte Prachtkäferfunde in Österreich (Coleoptera, Buprestidae). Joannea Zoologie 1:65–70Google Scholar
  10. Buse J, Griebeler EM (2011) Incorporating classified dispersal assumptions in predictive distribution models—a case study with grasshoppers and bush-crickets. Ecol Model 222:2130–2141CrossRefGoogle Scholar
  11. Climatetemp (2011) http://www.climatetemp.info. Accessed 9 Feb 2011
  12. Clusella-Trullas S, Blackburn TM, Chown SL (2011) Climatic predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change. Am Nat 177:738–751PubMedCrossRefGoogle Scholar
  13. Curletti G (1994) I Buprestidi d’Italia. Catalogo, Tassonomico, Sinonimico, Biologico, Geonemico. Monographie di Natura Bresciana 19, BresciaGoogle Scholar
  14. De’ath G (2007) Boosted trees for ecological modeling and prediction. Ecology 88:243–251PubMedCrossRefGoogle Scholar
  15. De’ath G, Fabricius KE (2000) Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81:3178–3192CrossRefGoogle Scholar
  16. Detzel P (1998) Die Heuschrecken Baden-Württembergs. Ulmer, StuttgartGoogle Scholar
  17. Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci USA 105:6668–6672PubMedCrossRefGoogle Scholar
  18. Dormann CF, McPherson JM, Araújo MB, Bivand R, Bolliger J, Carl G, Davies RG, Hirzel A, Jetz W, Kissling WD, Kühn I, Ohlemuller R, Peres-Neto PR, Reineking B, Schröder B, Schurr FM, Wilson R (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–628CrossRefGoogle Scholar
  19. Drees C, Brandmayr P, Buse J, Dieker P, Gürlich S, Habel J, Harry I, Härdtle W, Matern A, Meyer H, Pizzolotto R, Quante M, Schäfer K, Schuldt A, Taboada A, Assmann T (2011) Poleward range expansion without a southern contraction in the ground beetle Agonum viridicupreum (Coleoptera, Carabidae). In: Kotze DJ, Assmann T, Noordijk J, Turin H, Vermeulen R (eds) Carabid beetles as bioindicators: biogeographical, ecological and environmental studies. ZooKeys 100:333–352Google Scholar
  20. Drobyshev I, Niklasson M, Eggertsson O, Linderson H, Sonesson K (2008) Influence of annual weather on growth of pedunculate oak in southern Sweden. Ann For Sci 65:512. doi: 10.1051/forest:2008033 CrossRefGoogle Scholar
  21. Eichhoff WJ (1878) Aus Mühlhausen im Ober-Elsass. Entomologische Zeitung Stettin 39:197–200Google Scholar
  22. Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, McC. Overton J, Townsend Peterson A, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberon J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151Google Scholar
  23. Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77:802–813PubMedCrossRefGoogle Scholar
  24. Evans HF, Moraal LG, Pajares JA (2004) Biology, ecology and economic importance of Buprestidae and Cerambycidae. In: Lieutier F, Day RK, Battisti A, Gregoire J-C, Evans FH (eds) Bark and wood boring insects in living trees in europe, a synthesis. Kluwer Academic Publishers, Dordrecht, pp 447–474CrossRefGoogle Scholar
  25. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49CrossRefGoogle Scholar
  26. Geiser R (1998) Rote Liste der Käfer (Coleoptera). Schriftenreihe für Landschaftspflege und Naturschutz 55:194–201Google Scholar
  27. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating curve (ROC). Radiology 143:29–36PubMedGoogle Scholar
  28. Harrell FEJ (2001) Regression modelling strategies: with applications to linear models, logistic regression, and survival analysis. Springer, New YorkGoogle Scholar
  29. Hellrigl K (2010) Faunistik der Prachtkäfer von Südtirol (Coleoptera: Buprestidae). For Obs 5:153–206Google Scholar
  30. Hickling R, Roy DB, Hill JK, Thomas CD (2005) A northward shift of range margins in British Odonata. Glob Chang Biol 11:502–506CrossRefGoogle Scholar
  31. Hill JK, Thomas CD, Huntley B (2001) Climate and recent range changes in butterflies. In: Walther G-R, Burga CA, Edwards PJ (eds) “Fingerprints” of climate change. Adapted behaviour and shifting species ranges. Kluwer Academic, New York, pp 77–88Google Scholar
  32. Hochkirch A, Damerau M (2009) Rapid range expansion of a wing-dimorphic bush-cricket after the 2003 climatic anomaly. Biol J Linn Soc 97:118–127CrossRefGoogle Scholar
  33. Hosmer DW, Lemeshow S (2000) Applied logistic regression. Wiley, New YorkCrossRefGoogle Scholar
  34. IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  35. Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393CrossRefGoogle Scholar
  36. Lombardero MJ, de Ana Fernandez, Magan FJ (1996) Distribucion y danos de Coroebus florentinus (Herbst) (Col., Buprestidae) en Galicia (no de la Peninsula Iberica). Ecologia 10:499–508Google Scholar
  37. Mac Nally R (2000) Regression and model-building in conservation biology, biogeography and ecology: the distinction between—and reconciliation of—‘predictive’ and ‘explanatory’ models. Biodivers Conserv 9:655–671CrossRefGoogle Scholar
  38. Moraal LG, Hilszczansky J (2000) The buprestid beetle, Agrilus biguttatus (F.) (Col., Buprestidae), a recent factor in oak decline in Europe. J Pest Sci 5:134–138Google Scholar
  39. Musolin DL (2007) Insects in a warmer world: ecological, physiological and life-history responses of true bugs (Heteroptera) to climate change. Glob Chang Biol 13:1565–1585CrossRefGoogle Scholar
  40. Netherer S, Schopf A (2010) Potential effects of climate change on insect herbivores in European forests—general aspects and the pine processionary moth as specific example. For Ecol Manag 259:831–838CrossRefGoogle Scholar
  41. Niehuis M (2004) Die Prachtkäfer in Rheinland-Pfalz und im Saarland. GNOR-Eigenverlag, MainzGoogle Scholar
  42. Orlowsky B (2006) A statistical model for regional climate scenarios. In: Kundzewicz ZW, Hattermann FF (eds) Natural systems and global change. Research Center for Agricultural and Forest Environment of the Polish Academy of Sciences, Potsdam Institute for Climate Impact Research, Poznan, pp 28–34Google Scholar
  43. Ott J (2010) Dragonflies and climatic change—recent trends in Germany and Europe. BioRisk 5:253–286CrossRefGoogle Scholar
  44. Pearce JL, Boyce MS (2006) Modelling distribution and abundance with presence-only data. J Appl Ecol 43:405–412CrossRefGoogle Scholar
  45. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modelling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  46. Quante M (2010) The changing climate: past, present, future. In: Habel JC, Assmann T (eds) Relict species: phylogeography and conservation biology. Springer, Berlin, pp 9–56CrossRefGoogle Scholar
  47. Recalde JI, San Martin AF (2003) Coleópteros xilófagos asociados a ramas de Quercus muertas por la acción del bupréstido Coraebus florentinus (Herbst, 1801) en la Navarra media. Heteropterus Revista de Entomologia 3:43–50Google Scholar
  48. Schapire RE, Singer Y (1999) Improved boosting algorithms using confidence-rated predictions. Mach Learn 37:297–336CrossRefGoogle Scholar
  49. Schröder B (2006) ROC and AUC-calculation—evaluating the predictive performance of habitat models. Computer program, version 1.3. http://brandenburg.geoecology.uni-potsdam.de/users/schroeder/download.html
  50. Schröder B (2008) Challenges of species distribution modelling belowground. J Plant Nutr Soil Sci 171:325–337CrossRefGoogle Scholar
  51. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423Google Scholar
  52. Solinas M (1971) Considerazioni ecologiche sul preoccupante sviluppo di Coraebus florentinus (Herbst) nelle leccete del Gargano. Entomologica 7:115–121Google Scholar
  53. Solinas M (1974) Coraebus florentinus (Herbst) (Coleoptera, Buprestidae). Biologia, Danni, lotta Entomologica 10:141–193Google Scholar
  54. von dem Bussche J, Spaar R, Schmid H, Schröder B (2008) Modelling the recent and potential future spatial distribution of the Ring Ouzel (Turdus torquatus) and Blackbird (T. merula) in Switzerland. J Ornithol 149:529–544CrossRefGoogle Scholar
  55. Walther G-R, Burga CA, Edwards PJ (2001) “Fingerprints” of climate change. Adapted behaviour and shifting species ranges. Kluwer Academic, New YorkGoogle Scholar
  56. Williams DW, Liebhold AM (2002) Climate change and the outbreak ranges of two North American bark beetles. Agric For Entomol 4:87–99CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Jörn Buse
    • 1
    • 2
  • Eva Maria Griebeler
    • 1
  • Manfred Niehuis
    • 3
  1. 1.Department of Ecology, Institute of ZoologyJohannes Gutenberg-University MainzMainzGermany
  2. 2.University of Koblenz-Landau, Ecosystem AnalysisLandauGermany
  3. 3.AlbersweilerGermany

Personalised recommendations