Biodiversity and Conservation

, Volume 21, Issue 11, pp 2913–2926 | Cite as

Conserving the Brazilian semiarid (Caatinga) biome under climate change

  • Guilherme de OliveiraEmail author
  • Miguel Bastos Araújo
  • Thiago Fernado Rangel
  • Diogo Alagador
  • José Alexandre Felizola Diniz-Filho
Original Paper


The Caatinga is a semiarid biome of the northeast of Brazil with only 1 % of its territory currently conserved. The biome’s biodiversity is highly threatened due to exposure to land conversion for agricultural and cattle ranch. Climate forecasts predict increases in aridity, which could pose additional threats to the biome’s biodiversity. Here, we ask if the remnants of natural vegetation in Caatinga biome, where endemic terrestrial vertebrate species occur, are likely to retain more climatic suitability under climate change scenarios than other less pristine areas of the biome. In order to assess changes in climate suitability across individual species ranges, ensemble forecasting was used based on seven bioclimatic envelope models, three atmosphere–ocean general circulation models, and two greenhouse emission gas scenarios for 2020, 2050, and 2080. We found that most species will gain climatic suitability in the natural vegetation remnants of the Caatinga. Such gains are even greater than the expected to occur within random sets of areas with size similar to the natural vegetation remnants. Our results suggest that natural vegetation remnants will likely play a role of climate refuges for endemic vertebrate species, so efforts should be concentrated in these regions.


Ensemble of forecasts Species climatic suitability Natural vegetation remnants Endemic vertebrates 



The authors are grateful to two anonymous reviewers, and to the cooperation project of Fundação para Ciência e a Tecnologia and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (FCT-CAPES, Portugal–Brasil). GO is supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) doctoral fellowship (Proc. No. 552961/2008-6), and work by TFR and JAFDF on climate change and BEMs have been continuously supported by CNPq productivity grants and by the “Rede Nacional de Mudanças Climáticas” of INPE. GO was sponsored by CAPES-Balcão (Proc. No. 5201-09-8) while visiting the Universidade de Évora, Rui Nabeiro Biodiversity Chair, Portugal. DA was supported by a postdoctoral studentship (SFRH/BPD/51512/2011) awarded by FCT. Research by MBA, JAFDF, and TLFVBR is supported by the FCT Range Shift project.

Supplementary material

10531_2012_346_MOESM1_ESM.docx (784 kb)
Supplementary material 1 (DOCX 785 kb)


  1. Ab’Saber NA (1977) Espaços ocupados pela expansão dos climas secos na América do Sul, por ocasião dos períodos glaciais quaternários (SériePaleoclimas,3). Instituto de Geografia/USP, São PauloGoogle Scholar
  2. Alagador D, Martins MJ, Orestes-Cerdeira J, Cabeza M, Araújo MB (2011) A probability-based approach to match species with reserves when data are in different resolutions. Biol Conserv 144:811–820CrossRefGoogle Scholar
  3. Andrade-Lima D (1982) Present-day forest refuges in northeastern Brazil. In: Prance GT (ed) Biological diversification in the tropics. Columbia University Press, New York, pp 245–254Google Scholar
  4. Araújo MB (2004) Matching species with reserves—uncertainties from using data at different resolutions. Biol Conserv 118:533–538CrossRefGoogle Scholar
  5. Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47PubMedCrossRefGoogle Scholar
  6. Araújo MB, Rahbek C (2007) Conserving biodiversity in a world of conflicts. J Biogeogr 34:199–200CrossRefGoogle Scholar
  7. Araújo MB, Williams PH, Turner A (2002) A sequential approach to minimise threats within selected conservation areas. Biodivers Conserv 11:1011–1024CrossRefGoogle Scholar
  8. Araújo MB, Thuiller W, Williams PH, Reginster I (2005) Downscaling European species atlas distributions to a finer resolution: implications for conservation planning. Glob Ecol Biogeogr 14:17–30CrossRefGoogle Scholar
  9. Araújo MB, Alagador D, Cabeza M, Lafourcade B, Nogués-Bravo D, Thuiller W (2011) Climate change threatens European conservation areas. Ecol Lett 14:484–492PubMedCrossRefGoogle Scholar
  10. Balmford A, Moore JL, Brooks T, Burgess N, Hansen LA, Williams P, Rahbek C (2001) Conservation conflicts across Africa. Science 291:2616–2619PubMedCrossRefGoogle Scholar
  11. Bini LM, Diniz-Filho JAF, Rangel TFLVB, Akre TSB, Albaladejo RG, Albuquerque RS, Aparicio A, Araújo MB, Baselga A, Beck J, Belloq MB, Böhning-Gaese K, Borges PAV, Castro-Parga I, Chey VK, Chown SL, De Marco P, Dobkin DS, Ferrer-Castán D, Field R, Filloy J, Fleishman E, Gómez JF, Hortal J, Iverson JB, Kerr JT, Kissling WD, Kitching IJ, León-Cortéz JL, Lobo JM, Montoya D, Morales-Castilla I, Moreno JC, Oberdorff T, Olalla-Tárraga MÁ, Pausas JG, Qian H, Rahbek C, Rodríguez MÁ, Rueda M, Ruggiero A, Sackmann P, Sanders NJ, Terribile LC, Vetaas OR, Hawkins BA (2009) Coefficient shifts in geographical ecology: an empirical evaluation of spatial and non-spatial regression. Ecography 32:193–204CrossRefGoogle Scholar
  12. Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Model 153:51–68CrossRefGoogle Scholar
  13. Breiman L (2001) Random forest. Mach Learn 45:5–32CrossRefGoogle Scholar
  14. Buisson L, Thuiller W, Casajus§ N, Lek S, Grenouillet G (2010) Uncertainty in ensemble forecasting of species distributions. Glob Change Biol 16:1145–1157CrossRefGoogle Scholar
  15. Busby JR (1991) BIOCLIM: a bioclimate analysis and prediction system. In: Margules CR, Austin MP (eds) Nature conservation: cost effective biological surveys and data analysis. CSIRO, Melbourne, pp 64–68Google Scholar
  16. Cardillo M, Mace GM, Jones KE, Bielby J, Bininda-Emonds ORP, Sechrest W, Orme CDL, Purvis A (2005) Multiple causes of high extinction risk in large mammal species. Science 309:1239–1241PubMedCrossRefGoogle Scholar
  17. Cardillo M, Mace GM, Gittleman JL, Purvis A (2006) Latent extinction risk and the future battlegrounds of mammal conservation. Proc Natl Acad Sci USA 103:4157–4161PubMedCrossRefGoogle Scholar
  18. Castelletti CHM, Silva JMC, Tabarelli M, Santos AMM (2004) Quanto ainda resta da Caatinga? Uma estimativa preliminar. In: Silva JMC, Tabarelli M, Lins L (eds) Biodiversidade da Caatinga: áreas e ações prioritárias para a conservação. Ministério do Meio Ambiente, Brasília, pp 92–100Google Scholar
  19. Coimbra-Filho AF, Câmara IG (1996) Os limites originais do bioma Mata Atlântica na região Nordeste do Brasil. Fundação Brasileira para Conservação da Natureza, Rio de JaneiroGoogle Scholar
  20. Da Costa RC, de Araújo FS, Lima-Verde LW (2007) Flora and life-form spectrum of deciduous thorn woodland (caatinga) in northeastern, Brazil. J Arid Environ 68:237–247CrossRefGoogle Scholar
  21. Darhoh MBK (1998) The nature, causes and consequences of desertification in the drylands of Africa. Land Degrad Dev 9:1–20CrossRefGoogle Scholar
  22. de Oliveira G, Diniz-Filho JAF (2010) Spatial patterns of terrestrial vertebrates richness in Brazilian semiarid, Northeastern Brazil: selecting hypotheses and revealing constraints. J Arid Environ 74:1418–1426CrossRefGoogle Scholar
  23. de Oliveira G, Diniz-Filho JAF (2011) Evaluating environmental and geometrical constraints on endemic vertebrates of the semiarid Caatinga. Basic Appl Ecol 12:664–673CrossRefGoogle Scholar
  24. Diniz-Filho JAF, Bini LM (2005) Modelling geographical patterns in species richness using eigenvector-based spatial filters. Global Ecol Biogeogr 14:177–185CrossRefGoogle Scholar
  25. Diniz-Filho JAF, Bini LM (2008) Macroecology, global change and the shadow of forgotten ancestors. Global Ecol Biogeogr 17:11–17CrossRefGoogle Scholar
  26. Diniz-Filho JAF, Bini LM, Hawkins BA (2003) Spatial autocorrelation and red herrings in geographical ecology. Global Ecol Biogeogr 12:53–64CrossRefGoogle Scholar
  27. Diniz-Filho JAF, Bini LM, Rangel TFLVB, Loyola RD, Hof C, Nogués-Bravo D, Araújo MB (2009a) Partitioning and mapping uncertainties in ensemble of forecasts of species turnover under climate change. Ecography 32:897–906CrossRefGoogle Scholar
  28. Diniz-Filho JAF, De Oliveira G, Bini LM, Loyola RD, Nabout JC, Rangel TFLVB (2009b) Conservation biogeography and climate change in the Brazilian Cerrado. Nat Conserv 7:100–112Google Scholar
  29. Diniz-Filho JAF, de Marco P, Hawkins BA (2010) Defying the course of ignorance: perspectives in insect macroecology and conservation biology. Insect Conserv Divers 3:172–179Google Scholar
  30. Dormann CF, Mcpherson J, Araújo MB, Bivand R, Bolliger J, Carl G, Davies RG, Hirzel A, Jetz W, Kissling WD, Kühn I, Ohlemüller R, Peres-Neto P, Reineking B, Schröder B, Schurr FM, Wilson R (2007) Methods to account for spatial autocorrelation in the analysis of distributional species data: a review. Ecography 30:609–628CrossRefGoogle Scholar
  31. Eisenberg JF, Redford KH (1999) Mammals of neotropics. The University of Chicago Press, Chicago\LondonGoogle Scholar
  32. Ellis EC, Ramankutty N (2008) Putting people in the map: anthropogenic biomes of the world. Front Ecol Environ 6:439–447CrossRefGoogle Scholar
  33. Engler R, Randin CF, Thuiller W, Dullinger S, Zimmermann NE, Araújo MB, Pearman PB, Lay G, Piedallu C, Albert CH, Choler P, Coldea G, de Lamo X, Dirnböck T, Gégout J, Gómez-Garcia D, Grytnes J, Heegaard E, Høistad F, Nogués-Bravo D, Normand S, Puşcaş M, Sebastià M, Stanisci A, Theurillat J, Trivedi MR, Vittoz P, Guisan A (2011) 21st century climate change threatens mountain flora unequally across Europe. Glob Change Biol 17:2330–2341CrossRefGoogle Scholar
  34. Farber O, Kadmon R (2003) Assessment of alternative approaches for bioclimatic modelling with special emphasis on the Mahalanobis distance. Ecol Model 160:115–130CrossRefGoogle Scholar
  35. Garcia RA, Burgess ND, Cabeza M, Rahbek C, Araújo MB (2012) Exploring consensus in 21st century projections of climatically suitable areas for African vertebrates. Glob Change Biol 18:1253–1269CrossRefGoogle Scholar
  36. Geist HJ, Lambin EF (2004) Dynamic causal pattern of desertification. Bioscience 54:817–830CrossRefGoogle Scholar
  37. Griffith DA (2003) Spatial autocorrelation and spatial filtering—gaining understanding through theory and scientific visualization. Springer, BerlinGoogle Scholar
  38. Griffith DA, Peres-Neto PR (2006) Spatial modeling in ecology: the flexibility of eigenfunction spatial analysis. Ecology 87:2603–2613PubMedCrossRefGoogle Scholar
  39. Hawkins BA, Rodríguez MÁ, Weller SG (2011) Global angiosperm family richness revisited: linking ecology and evolution to climate. J Biogeogr 38:1253–1266CrossRefGoogle Scholar
  40. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. J Climatol 25:1965–1978CrossRefGoogle Scholar
  41. IPCC (Intergovernmental Panel on Climate Change) (2000) A special report of IPCC working group IIIGoogle Scholar
  42. IUCN (2011) IUCN red list of threatened species. Version 2010.1. Accessed 15 June 2011
  43. Kleinbauer I, Dullinger S, Peterseil J, Essl F (2010) Climate change might drive the invasive tree Robinia pseudacacia into nature reserves and endangered habitats. Biol Conserv 143:382–390CrossRefGoogle Scholar
  44. Leal IR, Tabarelli M, Silva JMC (2003) Ecologia e conservação da Caatinga. Editora Universitária, RecifeGoogle Scholar
  45. Leal IR, Silva JMC, Tabarelli M, Lacher TE Jr (2005) Changing the course of biodiversity conservation in the Caatinga of Northeastern Brazil. Conserv Biol 19:701–706CrossRefGoogle Scholar
  46. Legendre P (1993) Spatial autocorrelation—trouble or new paradigm. Ecology 74:1659–1673CrossRefGoogle Scholar
  47. Luck GW (2007) A review of relationships between human population density and biodiversity. Biol Rev 82:607–645PubMedCrossRefGoogle Scholar
  48. Malhado ACM, Pires GF, Costa MH (2010) Cerrado conservation is essential to protect the Amazon rainforest. Ambio 39:580–584PubMedCrossRefGoogle Scholar
  49. Mamede MA, Araújo FS (2008) Effects of slash and burn practices on a soil seed bank of Caatinga vegetation in Northeast Brazil. J Arid Environ 72:458–470CrossRefGoogle Scholar
  50. Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253PubMedCrossRefGoogle Scholar
  51. Marinho-Filho J, Veríssimo EW (1997) The rediscovery of Callicebus personatus barbarabrownae in Northeastern Brazil with a new Western limit for its distribution. Primates 38:429–433CrossRefGoogle Scholar
  52. Marini MÂ, Barbet-Massin M, Lopes LE, Jiguet F (2009) Major current and future gaps of Brazilian reserves to protect Neotropical savanna birds. Biol Conserv 142:3039–3050CrossRefGoogle Scholar
  53. McCullagh P, Nelder JÁ (1989) Generalized linear models. Chapman and Hall, Boca RatonGoogle Scholar
  54. Pereira IM, Andrade LA, Sampaio EVSB, Barbosa MRV (2003) Use-history effects on structure and flora of Caatinga. Biotropica 35:154–165Google Scholar
  55. Peterson AT, Soberon J, Pearson RG, Anderson RP, Martinez-Meyer ER, Nakamura M, Araújo MB (2011) Ecological niches and geographical distributions, monographs in population biology, vol 49. Princeton University Press, PrincetonGoogle Scholar
  56. Phillips SJ, Abderson RP, Schapire RE (2006) Maximum entropy modelling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  57. Prance GT (1987) Vegetation. In: Whitmore TC, Prance GT (eds) Biogeography and quaternary history in tropical America. Oxford Science Publications, OxfordGoogle Scholar
  58. R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available from
  59. Rangel TFLVB, Diniz-Filho JAF, Bini LM (2006) Towards an integrated computational tool for spatial analysis in macroecology and biogeography. Global Ecol Biogeogr 15:321–327CrossRefGoogle Scholar
  60. Rangel TFLVB, Diniz-Filho JAF, Bini LM (2010) SAM: a comprehensive application for spatial analysis in macroecology. Ecography 33:46–50CrossRefGoogle Scholar
  61. Rodrigues MT (1996) Lizards, snakes, and amphisbaenians from the quaternary sand dunes of the middle Rio Sao Francisco, Bahia, Brazil. J Herpetol 30:513–526CrossRefGoogle Scholar
  62. Rodrigues MT (2003) Herpetofauna da Caatinga. In: Leal IR, Tabarelli M, Silva JMC (eds) Ecologia e conservação da Caatinga. Editora Universitária, Recife, pp 181–236Google Scholar
  63. Salazar LF, Nobre CA, Oyama MD (2007) Climate change consequences on the biome distribution in tropical South America. Geophys Res Lett 34:1–16CrossRefGoogle Scholar
  64. Sampaio EVSB (1995) Overview of the Brazilian Caatinga. In: Bullock SH, Mooney HA, Medina E (eds) Seasonally tropical dry forests. Cambridge University Press, Cambridge, pp 35–63CrossRefGoogle Scholar
  65. Silva VPR (2004) On climate variability in Northeast Brazil. J Arid Environ 58:575–596CrossRefGoogle Scholar
  66. Sivakumar MKV (2007) Interactions between climate and desertification. Agric Forest Meteorol 142:143–155CrossRefGoogle Scholar
  67. Stockwell DRB, Noble IR (1992) Inductions of sets of rules from animal distribution data: a robust and informative method of data analysis. Math Comput Simul 33:385–390CrossRefGoogle Scholar
  68. Thomas CD (2010) Climate, climate change and range boundaries. Divers Distrib 16:488–495CrossRefGoogle Scholar
  69. Thuiller W, Lafourcade B, Engler R, Araújo MB (2010) BIOMOD 2009—a platform for ensemble forecasting of species distributions. Ecography 32:369–373CrossRefGoogle Scholar
  70. Vanzolini PE, Ramos-Costa AMM, Vitt LJ (1980) Répteis das Caatingas. Academia Brasileira de Ciências, Rio de JaneiroGoogle Scholar
  71. Veloso HP, Rangel-Filho ALR, Lima JCA (1991) Classificação da vegetação brasileira, adaptada a um sistema universal. IBGE-Departamento de Recursos Naturais e Estudos Ambientais, Rio de JaneiroGoogle Scholar
  72. Vieira WLS, Santana GD, Arzabe C (2009) Diversity of reproductive modes in anuran communities in the Caatinga drylands of northeastern Brazil. Biodivers Conserv 18:55–66CrossRefGoogle Scholar
  73. Whittaker RJ, Araújo MB, Jepson P, Ladle RJ, Watson JEM, Willis KJ (2005) Conservation biogeography: assessment and prospect. Divers Distrib 11:3–23CrossRefGoogle Scholar
  74. Williams PH, Hannah L, Andelman S, Midgley GF, Araújo MB, Hughes G, Manne L, Martinez-Meyer E, Pearson R (2005) Planning for climate change: identifying minimum-dispersal corridors for the Cape Proteaceae. Conserv Biol 19:1063–1074CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Guilherme de Oliveira
    • 1
    • 2
    Email author
  • Miguel Bastos Araújo
    • 3
    • 4
    • 5
  • Thiago Fernado Rangel
    • 1
  • Diogo Alagador
    • 4
  • José Alexandre Felizola Diniz-Filho
    • 1
  1. 1.Laboratório de Ecologia Teórica e Síntese, Departamento de Ecologia, Instituto de Ciências Biológicas IUniversidade Federal de GoiásGoiâniaBrazil
  2. 2.Programa de Pós-Graduação Ecologia e EvoluçãoUniversidade Federal de GoiásGoiâniaBrazil
  3. 3.Integrative Biology and Global Change Group, Department of Biodiversity and Evolutionary BiologyNational Museum of Natural History, CSICMadridSpain
  4. 4.Rui Nabeiro Biodiversity Chair, CIBIOUniversity of ÉvoraÉvoraPortugal
  5. 5.Department of Biology, Center for Macroecology, Evolution and ClimateUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations