Biodiversity and Conservation

, Volume 21, Issue 8, pp 1901–1919 | Cite as

A critical review on the utility of DNA barcoding in biodiversity conservation

Review Paper


This article considers the utility of DNA barcodes for conservation. DNA barcoding is a molecular tool that uses standardised genetic primers, traditionally the 600- to 800-segments of the mitochondrial gene cytochrome c oxidase I, to classify species. It has become increasingly popular as an efficient way of studying and categorising species to prioritise conservation efforts. A challenge remains, however, in using this information to provide a universally acceptable species concept. Genetic barcoding may focus conservation strategies on populations that have differences in mitochondrial DNA rather than on species. DNA barcodes might also provide potentially useful information about taxa that are relatively well studied—rather than those that require more research. The argument is made that DNA barcoding can provide useful taxonomic data, but should be used with caution to prevent it from being used out of context. DNA barcoding is an increasingly fashionable and novel concept that has generated optimism in enhancing biodiversity assessments—however, this approach should be used in conjunction with other methods for effective conservation efforts.


DNA barcoding Biodiversity assessment Species Conservation strategies 



Cytochrome c oxidase I


Deoxyribonucleic acid


Nuclear ribosomal internal transcribed spacer


Mitochondrial DNA


Nuclear pseudogene of mitochondrial origin


Operational taxonomic unit


Phylogenetic diversity


  1. Ardura A, Linde AR, Moreira JC, Garcia-Vasquez E (2010) DNA barcoding for conservation and management of Amazonian commercial fish. Biol Conserv 143:1438–1443CrossRefGoogle Scholar
  2. Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, CambridgeGoogle Scholar
  3. Baker AM, Hughes JM, Dean JC, Bunn SE (2004) Mitochondrial DNA reveals phylogenetic structuring and cryptic diversity in Australian freshwater macroinvertebrate assemblages. Mar Freshw Res 55:629–640CrossRefGoogle Scholar
  4. Ball SL, Armstrong KF (2006) DNA barcodes for insect pest identification: a test case with tussock moths (lepidoptera: lymantriidae). Can J Forest Res. 36:337–350CrossRefGoogle Scholar
  5. Ball SL, Hebert PDN, Burian SK, Webb JM (2005) Biological identifications of mayflies (Ephemeroptera) using DNA barcodes. J N Am Benthol Soc 24:508–524Google Scholar
  6. Barber P, Boyce SL (2006) Estimating diversity of Indo-Pacific coral reef stomatopods through DNA barcoding of stomatopod larvae. Proc Roy Soc B-Biol Sci 273:2053–2061CrossRefGoogle Scholar
  7. Barcode of Life Initiative [BOLI] (2012a) What is DNA barcoding? Accessed 17 Mar 2012
  8. BOLI (2012b) Publications. Accessed 17 Mar 2012
  9. Begerow D, Nilsson H, Unterseher M, Maier W (2010) Current state and perspectives of fungal DNA barcoding and rapid identification procedures. Appl Microbiol Biotechnol 87:99–108PubMedCrossRefGoogle Scholar
  10. Blaxter M, Mann J, Chapman T, Thomas F, Whitton C, Floyd R, Abebe E (2005) Defining operational taxonomic units using DNA barcode data. Philos Trans R Soc Lond B Biol Sci 360(1462):1935–1943PubMedCrossRefGoogle Scholar
  11. Bucklin A, Steinke D, Blanco-Bercial L (2011) DNA barcoding of marine metazoan. Ann Rev Mar Sci 3:471–508PubMedCrossRefGoogle Scholar
  12. Burzynski A, Zbawicka M, Skibinski DO, Wenne R (2003) Evidence for recombination of mtDNA in the marine mussel Mytilus trossulus from the Baltic. Mol Biol Evol 20:388–392PubMedCrossRefGoogle Scholar
  13. Butchart SHM, Baillie JEM, Chenery AM, Collen B, Gregory RD, Revenga C, Walpole M (2010) National indicators show biodiversity progress response. Science 329(5994):900–901CrossRefGoogle Scholar
  14. Cadotte MW, Davies TJ, Regetz J, Kembel SW, Cleland E, Oakley TH (2010) Phylogenetic diversity metric for ecological communities: integrating species richness, abundance and evolutionary history. Ecol Lett 13(1):96–105PubMedCrossRefGoogle Scholar
  15. Caesar RM, Sorensson M, Cognato AI (2006) Integrating DNA data and traditional taxonomy to streamline biodiversity assessment: an example from edaphic beetles in the Klamath ecoregion, California, USA. Divers Distrib 12:483–489CrossRefGoogle Scholar
  16. Carter N (2007) The politics of the environment: Ideas, Activism, Policy. Cambridge University Press, CambridgeGoogle Scholar
  17. Chase MW, Salamin N, Wilkinson M, Dunwell JM, Prasad R, Haidar N, Savolainen V (2005) Land plants and DNA barcodes: short-term and long-term goals. Philos Trans R Soc Lond B Biol Sci 360:1889–1895PubMedCrossRefGoogle Scholar
  18. Chase MW, Cowan RS, Hollingsworth PM, van ben Berg C, Madrinan S, Petersen G, Seberg O, Jorgensen T, Cameron KM, Carine M, Pedersen N, Hedderson TAJ, Conrad F, Salazar GA, Richardson JE, Hollingsworth ML, Barraclough TG, Kelly L, Wilkinson M (2007) A proposal for a standardised protocol to barcode all land plants. Taxon 56:295–299Google Scholar
  19. Chen W, Seifert KA, Levesque CA (2009) A high density COX1 barcode oligonucleotide array for identification and detection of species of Penicillium subgenus Penicillium. Mol Ecol Resour 9(suppl. 1):114–129PubMedCrossRefGoogle Scholar
  20. Chen S, Yao H, Han J, Liu C, Song J, Shi L, Zhu Y, Ma X, Gao T, Pang X, Luo K, Li Y, Li X, Jia X, Lin Y, Leon C (2010) Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS ONE 5(1):e8613PubMedCrossRefGoogle Scholar
  21. Consortium for the Barcode of Life [CBOL] (2011) What is CBOL? Accessed 24 Feb 2011
  22. Cooper CB, Dickinson J, Phillips T, Bonney R (2007) Citizen science as a tool for conservation in residential ecosystems. Ecol Soc 12(2):11–21Google Scholar
  23. Creer S, Fonseca VG, Porazinska DL, Giblin-Davis RM, Sung W, Power DM, Packer M, Carvalho GR, Blaxter ML, Lambshead PJD, Thomas WK (2010) Ultrasequencing of the meiofaunal biosphere: practice, pitfalls and promises. Mol Ecol 19(s1):4–20PubMedCrossRefGoogle Scholar
  24. Dahlberg A, Mueller GM (2011) Applying IUCN red-listing criteria for assessing and reporting on the conservation status of fungal species. Fungal Ecol 4:147–162CrossRefGoogle Scholar
  25. Damm S, Schierwater B, Hadrys H (2010) An integrative approach to species discovery in odonates: from character-based DNA barcoding to ecology. Mol Ecol 19:3881–3893PubMedCrossRefGoogle Scholar
  26. Dasmahapatra KK, Mallet J (2006) DNA barcodes: recent successes and future prospects. Heredity 97:254–255PubMedCrossRefGoogle Scholar
  27. de Groot GA, During HJ, Maas JW, Schneider H, Vogel J, Erkens RHJ (2011) Use of rbcL and trnL-F as a two-locus DNA barcode for identification of NW-European ferns: an ecological perspective. PLoS ONE 6(1):e16371PubMedCrossRefGoogle Scholar
  28. del Prado R, Cubas P, Lumbsch HT, Divakar PK, Blanco O, Amo de Paz G, Molina MC, Crespo A (2010) Genetic distances within and among species in monophyletic lineages of Parmeliceae (Ascomycota) as a tool for taxon delimitation. Mol Phylogenet Evol 56(1):125–133CrossRefGoogle Scholar
  29. Dentinger BM, Margaritescu S, Moncalvo J-M (2010) Rapid and reliable high-throughput methods of DNA extraction for use in barcoding and molecular systematic of mushrooms. Mol Ecol Resour 10:628–633PubMedCrossRefGoogle Scholar
  30. DeSalle R (2005) Genetics at the brink of extinction. Heredity 94:386–387PubMedCrossRefGoogle Scholar
  31. DeSalle R (2006) Species discovery versus species identification in DNA barcoding efforts: response to Rubinoff. Conserv Biol 20(5):1545–1547PubMedCrossRefGoogle Scholar
  32. DeSalle R, Amato G (2004) The expansion of conservation genetics. Rev Nat: Genet 5(9):702–712CrossRefGoogle Scholar
  33. Djoghlaf A (2010) From SATOYAMA to managing global biodiversity: foreword. Ecol Res 25(5):889–890CrossRefGoogle Scholar
  34. Ebach MC, Holdrege C (2005a) DNA barcoding is no substitute for taxonomy. Lett Nat 434(7034):697CrossRefGoogle Scholar
  35. Ebach MC, Holdrege C (2005b) More taxonomy, not DNA barcoding. Bioscience 55(10):822–823CrossRefGoogle Scholar
  36. Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10CrossRefGoogle Scholar
  37. Faith DP, Baker A (2006) Phylogenetic diversity (PD) and biodiversity conservation: some bioinformatics challenges. Evol Bioinform 2:121–128Google Scholar
  38. Faith DP, Williams KJ (2005) How large-scale DNA Barcoding Programs can boost biodiversity conservation planning: linking phylogenetic diversity (PD) analyses to the Barcode of Life Database (BoLD). Abstract. In: Australian entomological society’s 36th AGM and scientific conference/7th invertebrate biodiversity and conservation conference/Australian systematics society, Canberra, Australia, 4–9 December 2005Google Scholar
  39. Fay MF (2010) Marking the end of the international year of biodiversity. Bot J Linn Soc 164(4):337–341CrossRefGoogle Scholar
  40. Ficetola GF, Miaud C, Pompanon F, Taberlet P (2008) Species detection using environmental DNA from water samples. Biol Lett 4:423–425PubMedCrossRefGoogle Scholar
  41. Foottit RG, Maw HEL, Havill NP, Ahern RG, Montgomery ME (2009) DNA barcodes to identify species and explore diversity in the Adelgi- dae (Insecta: hemiptera: aphidoidea). Mol Ecol Resour 9:188–195PubMedCrossRefGoogle Scholar
  42. Francis CM, Borisenk AV, Ivanova NV, Eger JL, Lim BK, Guillen-Servent A, Kruskop SV, Mackie I, Hebert PDN (2010) The role of DNA barcode in understanding and conservation of mammal diversity in southeast Asia. PLoS ONE 5(9):e12575PubMedCrossRefGoogle Scholar
  43. Frézal L, Leblois R (2008) Four years of DNA barcoding: current advances and prospects. Infect Genet Evol 8:727–736PubMedCrossRefGoogle Scholar
  44. Funk DJ, Omland KE (2003) Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Ann Rev Ecol Syst 34:397–423CrossRefGoogle Scholar
  45. Goldstein PZ, DeSalle R (2011) Integrating DNA barcode data and taxonomic practice: determination, discovery, and description. BioEssays 33:135–147PubMedCrossRefGoogle Scholar
  46. Gomez A, Wright PJ, Lunt DH et al (2007) Mating trials validate the use of DNA barcoding to reveal cryptic speciation of a marine bryozoan taxon. Proc Roy Soc B-Biol Sci 274:199–207CrossRefGoogle Scholar
  47. Gossner MM, Hausmann A (2009) DNA barcoding enables the identification of caterpillars feeding on native and alien oak (Lepidoptera: geometridae). Mitteilungen Muenchener Entomologischen Gesellschaft 99:135–140Google Scholar
  48. Gregory TR (2005) DNA barcoding does not compete with taxonomy. Lett Nat 434(7037):1067CrossRefGoogle Scholar
  49. Haig SM (1998) Molecular contributions to conservation. Ecology 79(2):413–425CrossRefGoogle Scholar
  50. Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PDN (2006) DNA barcodes distinguish species of tropical lepidoptera. P Natl Acad Sci USA 103:968–971CrossRefGoogle Scholar
  51. Hambler C (2004) Conservation: studies in biology. Cambridge University Press, CambridgeGoogle Scholar
  52. Hebert PDN, Gregory TR (2005) The promise of DNA barcoding for taxonomy. Syst Biol 54(5):852–859PubMedCrossRefGoogle Scholar
  53. Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc Roy Soc B-Biol Sci 270:313–321CrossRefGoogle Scholar
  54. Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004a) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astrapes fulgerator. Proc Natl Acad Sci USA 101(41):14812–14817PubMedCrossRefGoogle Scholar
  55. Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM (2004b) Identification of birds through DNA barcodes. PLoS Biol 2:e312PubMedCrossRefGoogle Scholar
  56. Hebert PDN, deWaard JR, Landry J-F (2010) DNA barcodes for 1/1,000 of the animal kingdom. Biol Lett 6:359–362PubMedCrossRefGoogle Scholar
  57. Hennig W (1976) Anthomyiidae. In: Lindner E (ed) Die Fliegen der Palaearktischen Region. Schweizerbart, Stuttgart, pp 329–376Google Scholar
  58. Hickerson MJ, Meyer CP, Moritz C (2006) DNA barcoding will often fail to discover new animal species over broad parameter space. Syst Biol 55:729–739PubMedCrossRefGoogle Scholar
  59. Hilsdorf AWS, Krieger JE (2004) Restriction site heteroplasmy in the mitochondrial DNA of Brycon opalinus (Cuvier, 1819) (Characiformes, Characidae, Bryconiae). Braz J Med Biol Res 37:307–310PubMedCrossRefGoogle Scholar
  60. Hoeh WR, Stewert DT, Guttman SI (2002) High fidelity of mitochondrial genome transmission under the doubly uniparental mode of inheritance in freshwater mussels (bivalvia: unionoidea). Evolution 56:2252–2261PubMedGoogle Scholar
  61. Hoffmann M, Hilton-Taylor C, Angulo A, Bohm M, Brooks TM, Butchart SHM, Carpenter KE, Chanson J, Collen B, Cox NA, Darwall WRT, Dulvy NK, Harrison LR, Katariya V, Pollock CM, Quader S, Richman NI, Rodrigues ASL, Tognelli MF, Vie JC, Aguiar JM, Allen DJ, Allen GR, Amori G, Ananjeva NB, Andreone F, Andrew P, Ortiz ALA, Baillie JEM, Baldi R, Bell BD, Biju SD, Bird JP, Black-Decima P, Blanc JJ, Bolanos F, Bolivar W, Burfield IJ, Burton JA, Capper DR, Castro F, Catullo G, Cavanagh RD, Channing A, Chao NL, Chenery AM, Chiozza F, Clausnitzer V, Collar NJ, Collett LC, Collette BB, Fernandez CFC, Craig MT, Crosby MJ, Cumberlidge N, Cuttelod A, Derocher AE, Diesmos AC, Donaldson JS, Duckworth JW, Dutson G, Dutta SK, Emslie RH, Farjon A, Fowler S, Freyhof J, Garshelis DL, Gerlach J, Gower DJ, Grant TD, Hammerson GA, Harris RB, Heaney LR, Hedges SB, Hero JM, Hughes B, Hussain SA, Icochea J, Inger RF, Ishii N, Iskandar DT, Jenkins RKB, Kaneko Y, Kottelat M, Kovacs KM, Kuzmin SL, La Marca E, Lamoreux JF, Lau MWN, Lavilla EO, Leus K, Lewison RL, Lichtenstein G, Livingstone SR, Lukoschek V, Mallon DP, McGowan PJK, McIvor A, Moehlman PD, Molur S, Alonso AM, Musick JA, Nowell K, Nussbaum RA, Olech W, Orlov NL, Papenfuss TJ, Parra-Olea G, Perrin WF, Polidoro BA, Pourkazemi M, Racey PA, Ragle JS, Ram M, Rathbun G, Reynolds RP, Rhodin AGJ, Richards SJ, Rodriguez LO, Ron SR, Rondinini C, Rylands AB, de Mitcheson YS, Sanciangco JC, Sanders KL, Santos-Barrera G, Schipper J, Self-Sullivan C, Shi YC, Shoemaker A, Short FT, Sillero-Zubiri C, Silvano DL, Smith KG, Smith AT, Snoeks J, Stattersfield AJ, Symes AJ, Taber AB, Talukdar BK, Temple HJ, Timmins R, Tobias JA, Tsytsulina K, Tweddle D, Ubeda C, Valenti SV, van Dijk PP, Veiga LM, Veloso A, Wege DC, Wilkinson M, Williamson EA, Xie F, Young BE, Akcakaya HR, Bennun L, Blackburn TM, Boitani L, Dublin HT, da Fonseca GAB, Gascon C, Lacher TE, Mace GM, Mainka SA, McNeely JA, Mittermeier RA, Reid GM, Rodriguez JP, Rosenberg AA, Samways MJ, Smart J, Stein BA, Stuart SN (2011) The impact of conservation on the status of the world’s vertebrates. Science 330(6010):1503–1509CrossRefGoogle Scholar
  62. Holingsworth PM (2011) Redefining the DNA barcode for land plants. Proc Natl Acad Sci USA 108(49):19451–19452CrossRefGoogle Scholar
  63. Holingsworth PM, Forrest LL, Spouge JL, Hajibabaei M, Ratnasingham S, van der Bank M, Chase MW, Cowan RS, Erisckon DL, Fazekas AJ, Graham SW, James KE, Kim K-J, Kress WJ, Schneider H, van AlphenStahl J, Barret SCH, van den Berg C, Bogarin D, Burgess KS, Cameron KM, Carine M, Chacon J, Clark A, Clarkson JJ, Conrad F, Devey DS, Ford CS, Hedderson TAJ, Hollingsworth ML, Husband BC, Kelly LJ, Kesanakurti PR, Kim JS, Kim Y-D, Lahaye R, Lee H-L, Long DG, Madrinan S, Maurin O, Meusnier I, Newmaster SG, Park C-W, Percy DM, Petersen G, Richardson JE, Salazar GA, Savolainen V, Seberg O, Wilkinson MJ, Yi D-K, Little DP (2009) A DNA barcode for land plants. Proc Natl Acad Sci USA 106(31):12794–12797CrossRefGoogle Scholar
  64. Holmes B (2004) Barcode me. New Sci 2453:32–35Google Scholar
  65. Hubert N, Hanner R, Holm E, Mandrak NE, Taylor E, Burridge M, Watkinson D, Dumont P, Curry A, Bentzen P, Zhang J, April J, Bernatchez L (2008) Identifying Canadian freshwater fishes through DNA barcodes. PLoS ONE 3:e2490PubMedCrossRefGoogle Scholar
  66. International Barcode of Life [iBOL] (2011) International Barcode of Life. Accessed 12 Feb 2011
  67. Ivanova NV, Zemlak TS, Hanner RH, Hebert PDN (2007) Universal primer cocktails for fish DNA barcoding. Mol Ecol Notes 7(4):544–548Google Scholar
  68. Johnson SB, Waren A, Vrijenhoek RC (2008) DNA barcoding of lepetodrilus limpets reveals cryptic species. J Shellfish Res 27:43–51CrossRefGoogle Scholar
  69. Kelly LJ, Hollingsworth PM, Coppins BJ, Ellis CJ, Harrold P, Tosh J, Yahr R (2011) DNA barcoding of lichenized fungi demonstrates high identification success in a floristic context. New Phytol. doi:10.1111/j.1469-8137.2011.03677.x Google Scholar
  70. Kratysberg Y, Schwartz M, Brown TA, Ebralidse K, Kunz WS, Clayton DA, Vissing J, Khrapko K (2004) Recombination of human mitochondrial DNA. Science 304:981CrossRefGoogle Scholar
  71. Kress WJ, Erickson DL (2007) A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS ONE 2:e508PubMedCrossRefGoogle Scholar
  72. Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH (2005) Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci USA 102:8369–8374PubMedCrossRefGoogle Scholar
  73. Lahaye R, van der Bank M, Bogarin D, Warner J, Pupulin F, Gigot G, Maurin O, Duthoit S, Barraclough TG, Savolainen V (2008) DNA barcoding the floras of biodiversity hotspots. Proc Natl Acad Sci USA 105:2923–2928Google Scholar
  74. Lakra WS, Verma MS, Goswami M, Lal KK, Punia MP, Gopalakrishnan A, Singh KV, Ward RD, Hebert PDN (2011) DNA barcoding Indian marine fishes. Mol Ecol Resour 11(1):60–71PubMedCrossRefGoogle Scholar
  75. Lefebure T, Douady CJ, Gouy M, Gibert J (2006) Relationship between morphological taxonomy and molecular divergence with in Crustacea: proposal of a molecular threshold to help species delimitation. Mol Phylogenet Evol 40:435–447PubMedCrossRefGoogle Scholar
  76. Li R, Dao Z (2011) Identification of Meconopsis species by a DNA barcode sequence: the nuclear internal transcribed spacer (ITS) region of ribosomal deoxyribonucleic acid (DNA). Afr J Biotechnol 10(70):15805–15807CrossRefGoogle Scholar
  77. Li D-Z, Gao L-M, Li H-T, Wang H, Ge X-J, Liu J-Q, Chen Z-D, Zhou S-L, Chen S-L, Yang J-B, Fu C-X, Zeng C-X, Yan H-F, Zhu Y-J, Sun Y-S, Chen S-Y, Zhao L, Wang K, Yang T, Duan G-W (2011) Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc Natl Acad Sci USA 108(49):19641–19646PubMedCrossRefGoogle Scholar
  78. Locke SA, McLaughlin JD, Marcogliese DJ (2010) DNA barcodes show cryptic diversity and potential physiological basis for host specificity among diplostomoidea (platyhlminthes: digenea) parasitizing freshwater fishes in the St. Lawrence River, Canada. Mol Ecol 19(13):2813–2827PubMedCrossRefGoogle Scholar
  79. Magurran AE, Baillie SR, Buckland ST, Dick JM, Elston DA, Scott EM, Smith RI, Somerfield PJ, Watt AD (2010) Long-term datasets in biodiversity research and monitoring: assessing change in ecological communities through time. Trends Ecol Evol 25(10):574–582PubMedCrossRefGoogle Scholar
  80. Matz MV, Nielsen R (2005) A likelihood ratio test for species membership based on DNA sequence data. Philos Trans R Soc Lond B Biol Sci 360:1969–1974PubMedCrossRefGoogle Scholar
  81. May RM, Harvey PH (2009) Species uncertainties. Science 323:687PubMedCrossRefGoogle Scholar
  82. McKinney ML (1999) High rates of extinction and threat in poorly studied taxa. Conserv Biol 13:1273–1281CrossRefGoogle Scholar
  83. Meier R, Kwong S, Vaidya G, Ng PKL (2006) DNA barcoding and taxonomy in diptera: a tale of high intraspecific variability and low identification success. Syst Biol 55:715–728PubMedCrossRefGoogle Scholar
  84. Meusnier I, Singer GAC, Landry J-F, Hickey DA, Hebert PDN, Hajibabaei M (2008) A universal DNA mini-barcode for biodiversity analysis. BMC Genomics 9:214–217PubMedCrossRefGoogle Scholar
  85. Meyer CP, Paulay G (2005) DNA barcoding: error rates based on comprehensive sampling. PLoS Biol 3(12):e422PubMedCrossRefGoogle Scholar
  86. Mitchell A (2008) DNA barcoding demystified. Aust J Entomol 47:169–173CrossRefGoogle Scholar
  87. Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B (2011) How many species are there on earth and in the ocean? PLoS Biol 9(8):e1001127PubMedCrossRefGoogle Scholar
  88. Moritz C, Cicero C (2004) DNA barcoding: promise and pitfalls. PLoS Biol 2(10):1529–1531CrossRefGoogle Scholar
  89. Nardi F, Carapelli A, Fanciulli PP, Dallai R, Frati F (2001) The complete mitochondrial DNA sequence of the basal hexapod tetrodontophora bielanensis: evidence for heteroplasmy and tRNA translocations. Mol Biol Evol 18:1293–1304PubMedCrossRefGoogle Scholar
  90. Neigel J, Domingo A, Stake J (2007) DNA barcoding as a tool for coral reef conservation. Coral Reefs 26:487–499CrossRefGoogle Scholar
  91. Pauls SU, Blahnik RJ, Zhou X, Wardwell CT, Holzenthal RW (2010) DNA barcode data confirm new species and reveal cryptic diversity in Chilean Smicridea (Smicridea) (trichoptera:hydropsychidae). J N Am Benthol Soc 29:1058–1074CrossRefGoogle Scholar
  92. Petri B, von Haeseler A, Paabo S (1996) Extreme sequence heteroplasmy in bat mitochondrial DNA. Biol Chem 377:661–667PubMedGoogle Scholar
  93. Pilgrim EM, Jackson SA, Swenson S, Turcsanyi I, Friedman E, Weigt L, Bagley MJ (2011) Incorporation of DNA barcoding into a large-scale biomonitoring program: opportunities and pitfalls. J N Am Benthol Soc 30(1):217–231CrossRefGoogle Scholar
  94. Porazinska DL, Giblin-Davis RM, Sung WAY, Thomas WK (2010) Linking operational clustered taxonomic units (OCTUs) from parallel ultra sequencing (PUS) to nematode species. Zootaxa 2427:55–63Google Scholar
  95. Pramual P, Wongpakam K, Adler PH (2011) Cryptic biodiversity and phylogenetic relationships revealed by DNA barcoding of Oriental black flies in the subgenus gomphstilbia (diptera: simuliidae). Genome 54(1):1–9PubMedCrossRefGoogle Scholar
  96. Prendini L (2005) Comment on “Identifying spiders through DNA barcodes”. Can J Zool 83:498–504CrossRefGoogle Scholar
  97. Rach J, DeSalle R, Sarkar IN, Schierwater B, Hadrys H (2008) Character-based DNA barcoding allows discrimination of genera, species and populations in Odonata. Proc R Soc Lond B 275:237–247CrossRefGoogle Scholar
  98. Ragupathy S, Newmaster SG, Murugesan M, Balasubramaniam V (2009) DNA barcoding discriminates a new cryptic grass species revealed in an ethnobotany study by the hill tribes of the Western Ghats in southern India. Mol Ecol Resour 9:164–171PubMedCrossRefGoogle Scholar
  99. Ratnasingham S, Hebert PDN (2007) BOLD: the barcode of life data system ( Mol Ecol Notes 7: 355–364
  100. Rubinoff D (2006) Utility of mitochondrial DNA barcodes in species conservation. Conserv Biol 20(4):1026–1033PubMedCrossRefGoogle Scholar
  101. Rubinoff D, Sperling FAH (2004) Mitochondrial DNA sequence, morphology and ecology yield contrasting conservation implications for two threatened Buckmoths (hemileuca: saturniidae). Biol Conserv 118:341–351CrossRefGoogle Scholar
  102. Rubinoff D, Cameron S, Will K (2006) A genomic perspective on the shortcomings of mitochondrial DNA for “barcoding” identification. J Heredity 97(6):581–594CrossRefGoogle Scholar
  103. Savolainen V, Cowan RS, Vogler AP, Roderick GK, Lane R (2005) Towards writing the encyclopaedia of life: an introduction to DNA barcoding. Philos Trans R Soc Lond B Biol Sci 360:1805–1811PubMedCrossRefGoogle Scholar
  104. Schander C, Willassen E (2005) What can biological barcoding do for marine biology? Mar Biol Res 1:79–83CrossRefGoogle Scholar
  105. Scotland RW, Hughes C, Bailey D, Wortley A (2003) The big machine and the much-maligned taxonomist. Syst Biodivers 1:139–143CrossRefGoogle Scholar
  106. Seifert KA (2009) Barcoding fungi: progress towards DNA barcoding of fungi. Mol Ecol Resour 9(1):83–89PubMedCrossRefGoogle Scholar
  107. Shaw KL (2002) Conflict between nuclear and mitochondrial DNA phylogenies of a recent species radiation: what mtDNA reveals and conceals about modes of speciation in Hawaiian crickets. Proc Natl Acad Sci USA 99:16122–16127PubMedCrossRefGoogle Scholar
  108. Shendure J, Ji H (2008) Next-generation DNA sequencing. Nature Biotechnol 26(10):1135–11445CrossRefGoogle Scholar
  109. Smith MA, Fisher BL, Hebert PDN (2005) DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: the ants of Madagascar. Philos Trans R Soc Lond B Biol Sci 360:1825–1834PubMedCrossRefGoogle Scholar
  110. Smith MA, Woodley NE, Janzen DH, Hallwachs W, Hebert PDN (2006) DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies (diptera: tachinidae). Proc Natl Acad Sci USA 103:3657–3662PubMedCrossRefGoogle Scholar
  111. Soltis PS, Gitzendanner MA (1999) Molecular systematics and the conservation of rare species. Conserv Biol 13(3):471–483CrossRefGoogle Scholar
  112. Song H, Buhay JE, Whiting MF, Crandall KA (2008) Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proc Natl Acad Sci USA 105:13486–13491PubMedCrossRefGoogle Scholar
  113. Spooner DM (2009) DNA barcoding will frequently fail in complicated groups: an example in wild potatoes. Am J Bot 96(6):1177–1189PubMedCrossRefGoogle Scholar
  114. Stockinger H, Kruger M, Schußler A (2010) DNA barcoding of arbuscular mycorrhizal fungi. New Phytol 187:461–474PubMedCrossRefGoogle Scholar
  115. Stoeckle MY (2008) Blog: DNA identifies invasive parasitic wasp’ in the barcode of life blog. Accessed 26 Feb 2011
  116. Stoeckle MY, Hebert PDN (2008) Barcode of life: DNA tags help classify animals. Sci Am 298(10):39–43Google Scholar
  117. Swartz ER, Mwale M, Hanner R (2008) A role for barcoding in the study of African fish diversity and conservation. S Afr J Sci 104(4):293–298Google Scholar
  118. Talbot SL, Shields GF (1996) Phylogeography of brown bears (Ursus arctos) of Alaska and paraphyly within the Ursidae. Mol Phylogenet Evol 5:477–494PubMedCrossRefGoogle Scholar
  119. Taylor HR, Harris WE (2012) An emergent science on the brink of irrelevance: a review of the past 8 years of DNA barcoding. Mol Ecol Resour 12(3):377–388PubMedCrossRefGoogle Scholar
  120. Trewick SA (2008) DNA barcoding is not enough: mismatch of taxonomy and genealogy in New Zealand grasshoppers (orthoptera: acrididae). Cladistics 24:240–254CrossRefGoogle Scholar
  121. Tsang WY, Lemire BD (2002) Stable heteroplasmy but differential inheritance of a large mitochondrial DNA deletion in nematodes. Biochem Cell Biol 80:645–654PubMedCrossRefGoogle Scholar
  122. United Nations Convention on Biological Diversity [CBD] (2005) The Convention on Biological Diversity. Accessed 10 Mar 2011
  123. Valentini A, Pompanon F, Taberlet P (2008) DNA barcoding for ecologists. Trends Ecol Evol 24(2):110–117PubMedCrossRefGoogle Scholar
  124. van Kooten GC, Blute EH, Sinclair ARE (eds) (2001) Conserving nature’s diversity. Ashgate, HampshireGoogle Scholar
  125. Vences M, Thomas M, Bonett RM, Vieites DR (2005) Deciphering amphibian diversity through DNA barcoding: chances and challenges. Philos Trans R Soc Lond B Biol Sci 360:1859–1868PubMedCrossRefGoogle Scholar
  126. Ward RD, Holmes BH, White WT, Last PR (2008) DNA barcoding Australasian chondrichtyans: results and potential uses in conservation. Mar Freshw Res 59(1):57–71CrossRefGoogle Scholar
  127. Waugh J (2007) DNA barcoding in animal species: progress, potential and pitfalls. BioEssays 29(2):188–197PubMedCrossRefGoogle Scholar
  128. Whinnett A, Zimmerman M, Willmott KR, Herrera N, Mallarino R, Simpson F, Joron M, Lamas G, Mallet J (2005) Strikingly variable divergence times inferred across an Amazonian butterfly “suture zone”. Proc Roy Soc B-Biol Sci 272:2525–2533CrossRefGoogle Scholar
  129. Williams PH, An J, Brown MJF, Carolan JC, Goulson D, Huang J, Ito M (2012) Cryptic bumblebee species: consequences for conservation and the trade in greenhouse pollinators. PLoS ONE 7(3):e32992PubMedCrossRefGoogle Scholar
  130. Wilson EO (ed) (1994) Biodiversity. National Academy Press, Washington DCGoogle Scholar
  131. Wilson EO (2000) A global map of biodiversity. Science 289:2279PubMedGoogle Scholar
  132. Witt JDS, Threloff DL, Hebert PDN (2006) DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implications for desert spring conservation. Mol Ecol 15:3073–3082PubMedCrossRefGoogle Scholar
  133. Yao H, Song J-Y, Ma X-Y, Liu C, Li Y, Xu H-X, Han J-P, Duan L-S, Chen S-L (2009) Identification of Dendrobium species by a candidate DNA barcode sequence: the chloroplast psbA-trnH intergenic region. Planta Med 75:667–669PubMedCrossRefGoogle Scholar
  134. Yassin A, Markow TA, Narechania A, O’Grady PM, DeSalle R (2010) The genus Drosophila as a model for testing tree- and character-based methods of species identification using DNA barcoding. Mol Phylogenet Evol 57:509–517PubMedCrossRefGoogle Scholar
  135. Zemlak TS, Ward RD, Connell AD, Holmes BH, Hebert PDN (2009) DNA barcoding reveals overlooked marine fishes. Mol Ecol Resour 9:237–242PubMedCrossRefGoogle Scholar
  136. Zhao X, Li N, Guo W, Hu X, Liu Z, Gong G, Wang A, Feng J, Wu C (2004) Further evidence for paternal inheritance of mitochondrial DNA in the sheep (Ovis aries). Heredity 93:399–403PubMedCrossRefGoogle Scholar
  137. Zou S, Li Q, Kong L, Yu H, Zheng X (2011) Comparing the usefulness of distance, monophyly and character-based DNA barcoding methods in species identification: a case study of Neogastropoda. PLoS ONE 6(10):e26619PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.RomeItaly
  2. 2.Department of GeographyKing’s College LondonLondonEngland, UK

Personalised recommendations