Biodiversity and Conservation

, Volume 21, Issue 4, pp 1127–1147 | Cite as

Habitat patch and matrix effects on small-mammal persistence in Amazonian forest fragments

  • Manoel Santos-Filho
  • Carlos A. Peres
  • Dionei J. da Silva
  • Tânia M. Sanaiotti
Original Paper


Tropical forest mammal assemblages are widely affected by the twin effects of habitat loss and habitat fragmentation. We evaluated the effects of forest patch metrics, habitat structure, age of patch isolation, and landscape metrics on the species richness, abundance and composition of small mammals at 23 forest fragments (ranging in size from 43 to 7,035 ha) in a highly deforested 3,609-km2 landscape of southwestern Brazilian Amazonia. Using pitfall traps and both terrestrial and arboreal traplines of Sherman, Tomahawk and snap traps, we captured a total of 844 individuals over 34,900 trap-nights representing 26 species and 20 genera of small-mammals, including 13 rodent and 13 marsupial species. We also consider the effects of distance from forest edges on species occupancy and abundance. Overall small mammal abundance, species richness and species composition were primarily affected by the quality of the open-habitat matrix of cattle pastures, rather than by patch metrics such as fragment size. Ultimately, small mammal community structure was determined by a combination of both landscape- and patch-scale variables. Knowledge of the anthropogenic factors that govern small mammal community structure is of critical importance for managing the persistence of forest vertebrates in increasingly fragmented neotropical forest landscapes.


Fragmentation Matrix Marsupials Rodents Amazonia Species–area relationship Edge effects 



This study was funded by a Brazilian Ministry of Education (CAPES) doctoral studentship to MSF at the Instituto Nacional de Pesquisas da Amazônia (INPA, Manaus). We would like to thank all landowners for permission to work within their landholdings. William Magnusson, Renato Cintra, Jay Malcolm and an anonymous reviewer provided useful comments on the manuscript. This study was conducted under IBAMA research permits 033/02, 004/03 and 057/04.


  1. Amaral DL, Fonzar BC (1982) Levantamento de recursos naturais. In: RADAMBRASIL—Folha SD 21. Cuiabá—Rio de Janeiro. MMEGoogle Scholar
  2. Bergallo HG, Magnusson WE (1999) Effects of climate and food availability on four rodent species in southeastern Brazil. J Mammal 80:472–486CrossRefGoogle Scholar
  3. Broadbent EN, Asner GP, Keller M, Knapp DE, Oliveira PJC, Silva JN (2008) Forest fragmentation and edge effects from deforestation and selective logging in the Brazilian Amazon. Biol Conserv 141:1745–1757CrossRefGoogle Scholar
  4. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  5. Calcagno V (2010) glmulti: GLM model selection and multimodel inference made easy. R package version 0.6-3.
  6. Chiarello AG (1999) Effects of fragmentation of the Atlantic forest on mammal communities in south-eastern Brazil. Biol Conserv 89:71–82CrossRefGoogle Scholar
  7. Chiarello AG (2000) Conservation value of a native forest fragment in a region of extensive agriculture. Braz J Biol 60:237–247Google Scholar
  8. Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation, 2nd edn. Primer-E Ltd, PlymouthGoogle Scholar
  9. Código Florestal (2001) Código Florestal Brasileiro. Instituto Brasileiro de Desenvolvimento Florestal, Ministério da Agricultura, Brasília. [www.document]. URL
  10. Colwell RK (1997) Programa EstimateS, version 5: Statistical estimation of species richness and shared species from samples. User’s Guide and application published at:
  11. De Castro EBV, Fernandez FAS (2004) Determinants of differential extinction vulnerabilities of small mammals in Atlantic forest fragments in Brazil. Biol Conserv 119:73–80CrossRefGoogle Scholar
  12. Emmons LH, Feer F (1997) Neotropical rainforest mammals: a field guide, 2nd edn. University of Chicago Press, Chicago, p 307Google Scholar
  13. Fernandes MEB, Andrade FAG, Silva-Júnior SJ (2006) Dieta de Micoureus demerarae (Thomas) (Mammalia, Didelphidae) associada às florestas contíguas de mangue e terra firme em Bragança, Pará, Brasil. Revista Brasileira de Zoologia 23:1087–1092CrossRefGoogle Scholar
  14. Figueiredo MSL, Fernandez FAS (2004) Contrasting effects of fire on populations of two small rodent species in fragments of Atlantic Forest in Brazil. J Trop Ecol 20:225–228CrossRefGoogle Scholar
  15. Fonseca GAB, Robinson JG (1990) Forest size and structure: competitive and predatory effects on small mammal communities. Biol Conserv 53:265–294CrossRefGoogle Scholar
  16. Gascon C, Lovejoy TE, Bierregaard RO, Malcolm JR, Stouffer PC, Vasconcelos HL, Laurance WF, Zimmerman B, Toucher M, Borges S (1999) Matrix habitat and species richness in tropical forest remmants. Biol Conserv 91:223–229CrossRefGoogle Scholar
  17. Goodman SM, Rakotondravony D (2000) The effects of forest fragmentation and isolation on insectivorous small mammals (Lipotyphla) on Central High Plateau of Madagascar. J Zool 250:193–200CrossRefGoogle Scholar
  18. Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391CrossRefGoogle Scholar
  19. Gray TNE, Borey R, Hout SK, Chamnan H, Collar NJ, Dolman PM (2009) Generality of models that predict the distribution of species: conservation activity and reduction of model transferability for a threatened bustard. Conserv Biol 23:433–439PubMedCrossRefGoogle Scholar
  20. Laurance WF (2008) Theory meets reality: how habitat fragmentation research has transcended island biogeographic theory. Biol Conserv 141:1731–1744CrossRefGoogle Scholar
  21. Laurance WF, Peres CA (2006) Emerging threats to tropical forests. University of Chicago Press, ChicagoGoogle Scholar
  22. Laurance WF, Yensen’s E (1991) Predicting the impacts of edge effects in fragmented habitats. Biol Conserv 55:77–92CrossRefGoogle Scholar
  23. Laurance WF, Lovejoy TE, Vasconcelos HL, Bruna EM, Didhan RK, Stouffer PC, Gascon C, Bierregaard RO, Laurance SG, Sampaio E (2002) Ecosysten decay of Amazonian forest fragments: a 22-year investigation. Conserv Biol 16:605–618CrossRefGoogle Scholar
  24. Lees AC, Peres CA (2008) Avian Life history determinants of local extinction risk in a fragmented neotropical forest landscape. Anim Conserv 11:128–137CrossRefGoogle Scholar
  25. Lees AC, Peres CA (2009) Gap-crossing movements predict species occupancy in Amazonian forest fragments. Oikos 118:280–290CrossRefGoogle Scholar
  26. Lemmon PE (1957) A new instrument of measuring forest overstory density. J For 55:667–669Google Scholar
  27. Malcolm JR (1991) The small mammals of Amazon forest fragments: Pattern and process. Ph.D. Thesis, University of Florida. Gainesville, FloridaGoogle Scholar
  28. Malcolm JR (1994) Edge effects in central Amazonian forest fragment. Ecology 75:2438–2445CrossRefGoogle Scholar
  29. Malcolm JR (1995) Forest structure and the abundance and diversity of neotropical small mammals. In: Lowmant MD, Nadkarni NM (eds) Forest canopies. Academic Press, San DiegoGoogle Scholar
  30. Malcolm JR (1997a) Biomass and diversity of small mammals in Amazonian forest fragments. In: Laurance WF, Bierregaard RO Jr (Eds) Tropical forest remnants, ecology, management, and conservation of fragmented communities. The University of Chicago Press, Chicago, pp 207–220Google Scholar
  31. Malcolm JR (1997b) Insect biomass in Amazonian forest fragments. In: Stork NE, Adis J, Didham RK (eds) Can arthropods. Chapman and Hall, London, pp 510–533Google Scholar
  32. Maldonado-Coelho M, Marini MÂ (1999) Effects of forest fragment size and successional stage on mixed-species bird flocks in Southeastern Brazil. The Condor 102:585–594CrossRefGoogle Scholar
  33. Mcgarigal K, Gushman SA, Neel MC, Ene E (2002) FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. Available at the following web site:
  34. MCT/CNPq (1985) Pesquisa ecológica na região do Polonoroeste. Brasília, DFGoogle Scholar
  35. Michalski F, Peres CA (2007) Disturbance-mediated mammal abundance-area relationships in Amazonian forest fragments. Conserv Biol 21:1626–1640PubMedGoogle Scholar
  36. Oliveira VA, Amaral Filho ZP, Vieira PC (1982) Levantamentos de Recursos Naturais. In: RADAMBRASIL—SD 21—Cuiabá—Rio de Janeiro. MMEGoogle Scholar
  37. Pardini R (2001) Pequenos mamíferos e a fragmentação da Mata Atlântica de Una, sul da Bahia: Processos e conservação. Dissertação de doutorado, Universidade de São Paulo, São PauloGoogle Scholar
  38. Pardini R (2004) Effects of Forest fragmentation on small mammals in na Atlantic forest landscape. Biodivers Conserv 13:2567–2586CrossRefGoogle Scholar
  39. Passamani M (2003) O Efeito da fragmentação da Mata Atlântica Serrana sobre a comunidade de pequenos mamíferos de Santa Teresa, Espírito Santo. Dissertação de Doutorado, Universidade Federal do Rio de Janeiro, RJGoogle Scholar
  40. Passamani M, Ribeiro D (2009) Small mammals in a fragment and adjacent matrix in southeastern Brazil. Braz J Biol 69:305–309PubMedCrossRefGoogle Scholar
  41. Peres CA, Gardner TA, Barlow J, Jansen J, Michalski F, Lees AC, Vieira ICG, Moreira FMD, Feeley K (2010) Biodiversity conservation in human-modified Amazonian forest landscapes. Biol Conserv 143:2314–2327CrossRefGoogle Scholar
  42. Pinheiro PS, Carvalho FMV, Fernandez FAS, Nessimian JL (2002) Diet of the marsupial Micoureus demerarae in small fragments of Atlantic Forest in southeastern Brazil. Stud Neotrop Fauna Environ 37:213–218Google Scholar
  43. Pires AS, Lira PK, Fernandez FAF, Schittini GM, Oliveira LC (2002) Frequency of movements of small mammals among Atlantic Coastal forest fragments in Brazil. Biol Conserv 108:229–237CrossRefGoogle Scholar
  44. Resende MS, Sandanielo A, Couto EG (1994) Zoneamento agroecológico do sudoeste do estado de Mato Grosso. Documentos 4. EMPAER/EMBRAPAGoogle Scholar
  45. Rittl CE (1998) Efeitos da extração seletiva de madeira sobre a comunidade de pequenos mamíferos de uma floresta de terra firme na Amazônia Central. Dissertação de Mestrado em Ecologia. INPAGoogle Scholar
  46. Santos BA, Peres CA, Oliveira MA, Grillo A, Alves-Costa CP, Tabarelli M (2007) Drastic functional erosion of tree assemblage attributes in Atlantic forest fragments of northeastern Brazil. Biol Conserv 141:249–260CrossRefGoogle Scholar
  47. Santos-Filho M, Da Silva DJ, Sanaiotti TM (2006) Efficiency of four trap types in sampling small mammals in forest fragments, Mato Grosso, Brazil. Mastozoologia Neotropical 13:217–225Google Scholar
  48. Santos-Filho M, Da Silva DJ, Sanaiotti TM (2008) Variação sazonal na riqueza e na abundância de pequenos mamíferos, na estrutura da floresta e na disponibilidade de artrópodes em fragmentos florestais no Mato Grosso, Brasil. Biota Neotropica, v8 (1):115–121Google Scholar
  49. Scott DM, Brown D, Mahood S, Denton B, Silburn A, Rakotondraparany F (2005) The impacts of forest clearance on lizard, small mammals and bird communities in the arid spiny forest, southern Madagascar. Biol Conserv 127:72–87CrossRefGoogle Scholar
  50. Skole D, Tucker C (1993) Tropical deforestation and habitat fragmentation in the Amazon: satellite data from 1978 to 1988. Science 260:1905–1909PubMedCrossRefGoogle Scholar
  51. Stevens SM, Husband TP (1998) The influence of edge on small mammals: evidence from Brazilian Atlantic forest fragments. Biol Conserv 85:1–8CrossRefGoogle Scholar
  52. Tattersall FH, Macdonald DW, Hart BJ, Hohnson P, Manley W, Feber R (2002) Is habitat linearity important for small mammal communities on farmland? J Appl Ecol 39:643–652CrossRefGoogle Scholar
  53. Terborgh J (1992) Maintenance of diversity in tropical forests. Biotropica 24:283–292CrossRefGoogle Scholar
  54. Umetsu F, Pardini P (2007) Small mammals in a mosaic of forest remnants and anthropogenic habitats—evaluating matrix quality in an Atlantic forest landscape. Landsc Ecol 22:517–530CrossRefGoogle Scholar
  55. Vieira EM (1999) Small mammal communities and fire in the Brazilian Cerrado. J Zool 249:75–81CrossRefGoogle Scholar
  56. Whittingham MJ, Swetnam RD, Wilson JD, Chamberlain DE, Freckleton RP (2005) Habitat selection by yellowhammers Emberiza citrinella on lowland farmland at two spatial scales: implications for conservation management. J Appl Ecol 42:270–280CrossRefGoogle Scholar
  57. Yahner RH (1988) Changes in wildlife communities near edges. Conserv Biol 2:333–339CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Manoel Santos-Filho
    • 1
    • 2
  • Carlos A. Peres
    • 3
  • Dionei J. da Silva
    • 1
    • 2
  • Tânia M. Sanaiotti
    • 2
  1. 1.Universidade do Estado de Mato GrossoTangará da SerraBrazil
  2. 2.Instituto Nacional de Pesquisa da Amazônia (INPA)ManausBrazil
  3. 3.School of Environmental SciencesUniversity of East AngliaNorwichUK

Personalised recommendations