Biodiversity and Conservation

, Volume 21, Issue 3, pp 655–669

Vulnerability of mires under climate change: implications for nature conservation and climate change adaptation

  • Franz Essl
  • Stefan Dullinger
  • Dietmar Moser
  • Wolfgang Rabitsch
  • Ingrid Kleinbauer
Original Paper


Wetlands in general and mires in particular belong to the most important terrestrial carbon stocks globally. Mires (i.e. bogs, transition bogs and fens) are assumed to be especially vulnerable to climate change because they depend on specific, namely cool and humid, climatic conditions. In this paper, we use distribution data of the nine mire types to be found in Austria and habitat distribution models for four IPCC scenarios to evaluate climate change induced risks for mire ecosystems within the 21st century. We found that climatic factors substantially contribute to explain the current distribution of all nine Austrian mire ecosystem types. Summer temperature proved to be the most important predictor for the majority of mire ecosystems. Precipitation—mostly spring and summer precipitation sums—was influential for some mire ecosystem types which depend partly or entirely on ground water supply (e.g. fens). We found severe climate change induced risks for all mire ecosystems, with rain-fed bog ecosystems being most threatened. Differences between scenarios are moderate for the mid-21st century, but become more pronounced towards the end of the 21st century, with near total loss of climate space projected for some ecosystem types (bogs, quagmires) under severe climate change. Our results imply that even under minimum expected, i.e. inevitable climate change, climatic risks for mires in Austria will be considerable. Nevertheless, the pronounced differences in projected habitat loss between moderate and severe climate change scenarios indicate that limiting future warming will likely contribute to enhance long-term survival of mire ecosystems, and to reduce future greenhouse gas emissions from decomposing peat. Effectively stopping and reversing the deterioration of mire ecosystems caused by conventional threats can be regarded as a contribution to climate change mitigation. Because hydrologically intact mires are more resilient to climatic changes, this would also maintain the nature conservation value of mires, and help to reduce the severe climatic risks to which most Austrian mire ecosystems may be exposed in the 2nd half of the 21st century according to IPCC scenarios.


Biodiversity BIOMOD Carbon sequestration Climate scenarios Ecosystems Habitat loss Habitat models Mitigation Peatland 



Area under the curve (AUC)


Generalized additive models


Generalized boosting models


Generalized linear models


Multiple adaptive regression splines


Random forest for classification and regression

Supplementary material

10531_2011_206_MOESM1_ESM.doc (46 kb)
Supplementary material 1 (DOC 45 kb)
10531_2011_206_MOESM2_ESM.doc (62 kb)
Supplementary material 2 (DOC 63 kb)


  1. Allison I, Bindoff NL, Bindschadler RA, Cox PM et al (2009) The Copenhagen diagnosis. Updating the world on the latest climate science. The University of New South Wales Climate Change Research Centre (CCRC), Sydney, AustraliaGoogle Scholar
  2. Araujó MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47PubMedCrossRefGoogle Scholar
  3. Araújo MB, Thuiller W, Pearson RG (2006) Climate warming and the decline of amphibians and reptiles in Europe. J Biogeogr 33:1712–1728CrossRefGoogle Scholar
  4. Banko G (2005) CLC 2000—Austria. Upgrading and updating the 1990 Corine land cover map. Final report, Umweltbundesamt, ViennaGoogle Scholar
  5. Bellamy PH, Loveland PJ, Bradley I, Lark RM, Kirk GJD (2005) Carbon loss from all soils across England and Wales 1978–2003. Nature 437:245–248PubMedCrossRefGoogle Scholar
  6. Bergamini A, Peintinger M, Fakheran S, Moradi H, Schmid B, Joshi J (2009) Loss of habitat specialists despite conservation management in fen remnants 1995–2006. Persp Plant Ecol Evol Syst 11:65–79CrossRefGoogle Scholar
  7. Beven KJ, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology. Hydrol Sci Bull 24:43–69CrossRefGoogle Scholar
  8. Bobbink R, Hornung M, Roelofs JGM (1998) The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. J Ecol 86:717–738CrossRefGoogle Scholar
  9. Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R et al (2010) Global assessment of nitrogen deposition effects on plant terrestrial biodiversity: a synthesis. Ecol Appl 20:30–59PubMedCrossRefGoogle Scholar
  10. Böhner J, McCloy KR, Strobl J (eds) (2006) SAGA—Analysis and modelling applications. Göttinger Geogr Abhandlungen 115:1–130Google Scholar
  11. Bortoluzzi E, Epron E, Siegenthaler A, Gilbert D, Buttler A (2006) Carbon balance of a European mountain bog at contrasting stages of regeneration. New Phytol 172:708–718PubMedCrossRefGoogle Scholar
  12. Bragazza L (2008) A climatic threshold triggers the die off of peat mosses during an extreme heat wave. Glob Change Biol 14:2688–2695Google Scholar
  13. Breiman L (2001) Random forests. Mach Learn 45:5–32CrossRefGoogle Scholar
  14. Brooker RW (2006) Plant-plant interactions and environmental change. New Phytol 171:271–284PubMedCrossRefGoogle Scholar
  15. Bryne KA, Chojnicki B, Christensen TR, Drösler M, Freibauer A et al (2004) EU peatlands: current carbon stocks and trace gas fluxes. In: CarboEurope-GHG, Concerted action synthesis of the European greenhouse gas budget, Department of Forest Science and Environment, Viterbo, pp 1–58Google Scholar
  16. Carroll MJ, Dennis P, Pearce-Higgins J, Thomas CD (2011) Maintaining northern peatland ecosystems in a changing climate: effects of soil moisture, drainage and drain blocking on craneflies. Glob Change Biol 17:2991–3001CrossRefGoogle Scholar
  17. Clark J, Gallego-Sala A, Allott TEH, Chapman SJ, Farewell T et al (2010) Assessing the vulnerability of blanket peat to climate change using an ensemble of statistical bioclimatic envelope models. Clim Res 45:131–150CrossRefGoogle Scholar
  18. Conrad O (2007) SAGA—Entwurf, Funktionsumfang und Anwendung eines Systems für Automatisierte Geowissenschaftliche Analysen. Electronic doctoral dissertation, University of GöttingenGoogle Scholar
  19. Couwenberg J, Thiele A, Tanneberger F, Augustin J, Bärisch S et al (2011) Assessing greenhouse gas emissions from peatlands using vegetation as a proxy. Hydrobiologia 674:67–89CrossRefGoogle Scholar
  20. Dise N (2009) Peatland response to global change. Science 326:810–811PubMedCrossRefGoogle Scholar
  21. Dullinger S, Dirnböck T, Grabherr G (2004) Modelling climate change-driven treeline shifts: relative effects of temperature increase, dispersal and invasibility. J Ecol 92:241–252CrossRefGoogle Scholar
  22. EC (2007) Interpretation manual of European Union habitats. DG environment, Brussels, Accessed 15 Mar 2011
  23. Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151CrossRefGoogle Scholar
  24. Engler R, Randin CF, Vittoz P, Czáka T, Beniston M et al (2009) Predicting future distributions of mountain plants under climate change: does dispersal capacity matter? Ecography 32:34–45CrossRefGoogle Scholar
  25. Essl F, Egger G (2010) Lebensraumvielfalt in Österreich–Gefährdung und Handlungsbedarf. Zusammenschau der Roten Liste gefährdeter Biotoptypen Österreichs. Naturwissenschaftlicher Verein für Kärnten, KlagenfurtGoogle Scholar
  26. EU (2007) Limiting global climate change to 2 degrees celsius. Accessed 15 Mar 2011
  27. Ferrier S, Guisan A (2006) Spatial modelling of biodiversity at the community level. J Appl Ecol 43:393–404CrossRefGoogle Scholar
  28. Freibauer A, Drösler M, Gensior A, Schulze ED (2009) Das Potenzial von Wäldern und Mooren für den Klimaschutz in Deutschland und auf globaler Ebene. Natur Land 84:20–25Google Scholar
  29. Friedman JH (1991) Multivariate additive regression splines. Ann Stat 19:1–67CrossRefGoogle Scholar
  30. Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29:1189–1232CrossRefGoogle Scholar
  31. Fronzek S, Carter TR, Jyhlä K (2012) Representing two centuries of past and future climate for assessing risks to biodiversity in Europe. Glob Ecol Biogeo 21(1):19–35Google Scholar
  32. Fronzek S, Luoto M, Carter TR (2006) Potential effect of climate change on the distribution of palsa mires in subarctic Fennoscandia. Clim Res 32:1–12CrossRefGoogle Scholar
  33. Fronzek S, Carter TR, Räisänen J, Ruokolainen L, Luoto M (2010) Applying probabilistic projections of climate change with impact models: a case study for sub-arctic palsa mires in Fennoscandia. Clim Change 99:515–534CrossRefGoogle Scholar
  34. Grünig A, Steiner GM (2010) Moore: vom Aschenputtel zur Prinzessin? Natur Land 96:4–11Google Scholar
  35. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186CrossRefGoogle Scholar
  36. Hastie TJ, Tibshirani R (1990) Generalized additive models. Chapman and Hall, LondonGoogle Scholar
  37. Hobbs RJ, Arico S, Aronson J, Baron JS, Bridgewater P et al (2006) Novel ecosystems: theoretical and management aspects of the new ecological world order. Glob Ecol Biogeogr 15:1–7CrossRefGoogle Scholar
  38. Hobbs RJ, Higgs E, Harris JA (2009) Novel ecosystems: implications for conservation and restoration. Trends Ecol Evol 24:599–605PubMedCrossRefGoogle Scholar
  39. Hogg EH, Lieffers VJ, Wein RW (1992) Potential carbon losses from peat profiles: effects of temperature, drought cycles, and fire. Ecol Appl 2:298–306CrossRefGoogle Scholar
  40. IPCC (2007) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth assessment report of the intergovernmental panel on climate change (AR4). Cambridge University Press, CambridgeGoogle Scholar
  41. Joosten H (2009) The global peatland CO2 picture. Wetlands International, Greifswald UniversityGoogle Scholar
  42. Klaus G (2007) Zustand und Entwicklung der Moore in der Schweiz. Ergebnisse der Wirkungskontrolle Moorschutz. Umwelt Zustand Nr. 0730, BAFU, BernGoogle Scholar
  43. Le Quéré C, Raupach MR, Canadell JG, Laurent Bopp MG, Ciais P et al (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci 2:831–836CrossRefGoogle Scholar
  44. Lindsay R (2010) Peatbogs and carbon: a critical synthesis to inform policy development in oceanic peat bog conservation and restoration in the context of climate change. University of East London. Accessed 10 Mar 2010
  45. MA (2005) Millenium ecosystem assessment. Ecosystems and human well-being: a framework for assessment. Island Press, WashingtonGoogle Scholar
  46. McCullagh P, Nelder JA (1989) Generalized Linear Models. Chapman & Hall, New YorkGoogle Scholar
  47. McKinsey (2009) Pathways to a low carbon economy. Accessed 15 Oct 2009
  48. Mitchell TD, Carter TR, Jones PD, Hulme M, New M (2004) A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record (1901–2000) and 16 scenarios (2001–2100). Tyndall Centre Working Paper 55:1–29Google Scholar
  49. Nakicenovic N, Swart R (eds) (2000) IPCC special report on emission scenarios. Cambridge University Press, CambridgeGoogle Scholar
  50. New M, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. Clim Res 21:1–25CrossRefGoogle Scholar
  51. Niklfeld H (1998) Mapping the flora of Austria and the eastern Alps. Revue Valdôtaine d’Histoire Naturelle 51:53–62Google Scholar
  52. Niklfeld H (ed) (1999) Rote Listen gefährdeter Pflanzen Österreichs, 2 Auflage. Grüne Reihe 10:33–151Google Scholar
  53. Ovando P, Caparrós A (2009) Land use and carbon mitigation in Europe: a survey of the potentials of different alternatives. Ener Pol 37:992–1003CrossRefGoogle Scholar
  54. Ozinga WA, Römermann C, Bekker RM, Prinzing A, Tamis WLM et al (2009) Dispersal failure contributes to plant losses in NW Europe. Ecol Lett 12:66–74PubMedCrossRefGoogle Scholar
  55. Parish F, Sirin A, Charman D, Joosten H, Minaeva T, Silvius M (eds) (2008) Assessment on peatlands, biodiversity and climate change. Global Environment Centre, Kuala Lumpur and Wetlands International WageningenGoogle Scholar
  56. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669CrossRefGoogle Scholar
  57. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42PubMedCrossRefGoogle Scholar
  58. Parviainen M, Luoto M (2007) Climate envelopes of mire complex types in Fennoscandia. Geogr Ann 89A:137–151CrossRefGoogle Scholar
  59. Pearson RG (2006) Climate change and the migration capacity of species. Trends Ecol Evol 21:111–113PubMedCrossRefGoogle Scholar
  60. R Development Core Team (2010) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria ( Accessed 15 Oct 2010
  61. Rickebusch S, Thuiller W, Hickler T, Araujo MB, Sykes MT et al (2008) Incorporating the effects of changes in vegetation functioning and CO2 on water availability in plant habitat models. Biol Lett 4:556–559PubMedCrossRefGoogle Scholar
  62. Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield E et al (2000) Biodiversity–global biodiversity scenarios for the year 2100. Science 287:1770–1774PubMedCrossRefGoogle Scholar
  63. Schmidli J, Frei C (2005) Trends of heavy precipitation and wet and dry spells in Switzerland during the 20th century. Int J Clim 25:753–771CrossRefGoogle Scholar
  64. Schweiger O, Settele J, Kudrna O, Klotz S, Kühn I (2008) Climate change can cause spatial mismatch of trophically interacting species. Ecol 89:3472–3479CrossRefGoogle Scholar
  65. Schweiger O, Heikkinen RK, Harpke A, Hickler T, Klotz S et al (2012) Increasing range mismatching of interacting species under global change is related to species traits. Glob Ecol Biogeo 21(1):88–99Google Scholar
  66. Settele J, Kudrna O, Harpke A, Kühn I, van Sway C et al (2008) Climatic risk atlas of European butterflies. Pensoft Publishers, SofiaGoogle Scholar
  67. Smart S, Henrys P, Scott W, Hall J, Evans C et al (2010) Impacts of pollution and climate change on ombrotrophic Sphagnum species in the UK: analysis of uncertainties in two empirical niche models. Clim Res 45:163–177CrossRefGoogle Scholar
  68. Statistik Austria (2010). Adress-, Gebäude- und Wohnungsregister II (AGWRII). Accessed 10 Mar 2010
  69. Steiner M (1992) Österreichischer Moorschutzkatalog. Grüne Reihe des BMUF, ViennaGoogle Scholar
  70. Stern N (2007) The economics of climate change. Cambridge University Press, CambridgeGoogle Scholar
  71. Succow M, Joosten H (2001) Landschaftsökologische Moorkunde. 2. Auflage. Schweizerbart`sche Verlagsbuchhandlung, StuttgartGoogle Scholar
  72. Swets JA (1998) Measuring the accuracy of diagnostic systems. Science 240:1285–1293CrossRefGoogle Scholar
  73. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ et al (2004) Extinction risk from climate change. Nature 427:145–148PubMedCrossRefGoogle Scholar
  74. Thuiller W, Lavorel S, Araujo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci 102:8245–8250PubMedCrossRefGoogle Scholar
  75. Thuiller W, Lafourcade B, Engler R, Araújo MB (2009) BIOMOD a platform for ensemble forecasting of species distributions. Ecography 32:369–373CrossRefGoogle Scholar
  76. Tuittilla E, Vasander H, Laine J (2004) Sensitivity of C sequestration in reintroduced Sphagnum to water-level variation in a cutaway peatland. Restor Ecol 12:483–493CrossRefGoogle Scholar
  77. Umweltbundesamt (2010) Naturschutzfachliches informations system Austria (NISA). Accessed 10 Mar 2010
  78. Van Husen D (1987) The Eastern Alps during the Pleistocene. Geologische Bundesanstalt, ViennaGoogle Scholar
  79. Vile MA, Scott KD, Brault E, Wieder RK, Vitt DH (2011) Living on the edge: the effects of drought on Canada’s western boreal peatland. In: Tuba Z, Slack NG, Starck LR (eds) Bryophyte ecology and climate change. Cambridge University Press, Cambridge, pp 275–297Google Scholar
  80. Williams JW, Jackson ST, Kutzbacht JE (2007) Projected distributions of novel and disappearing climates by 2100 AD. Proc Natl Acad Sci 104:5738–5742PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Franz Essl
    • 1
  • Stefan Dullinger
    • 2
    • 3
  • Dietmar Moser
    • 1
    • 3
  • Wolfgang Rabitsch
    • 1
  • Ingrid Kleinbauer
    • 3
  1. 1.Environment Agency AustriaViennaAustria
  2. 2.Department of Conservation Biology, Vegetation and Landscape EcologyUniversity of ViennaViennaAustria
  3. 3.Vienna Institute for Nature Conservation and AnalysesViennaAustria

Personalised recommendations