Biodiversity and Conservation

, Volume 21, Issue 1, pp 205–219

The importance of timing and number of surveys in fungal biodiversity research

Original Paper

Abstract

Practical conservation of biological diversity is dependent on reliable knowledge about what kind, how much, and where the diversity is. To obtain such knowledge three questions, why, what, and how, must be answered before commencing any biodiversity survey. While the questions why and what are often value decisions and thus determined outside the realm of scientific research, the question about how the surveys are conducted lies in the heart of science. Here, we report an intensive repeated survey of wood-inhabiting fungi with the aim of determining the optimal timing and number of the surveys for reliable estimation of the diversity of this species group. The research focusing on the ecology of wood-inhabiting fungi has been increasing but little is known about the reliability of the methods. The variation in the estimates of diversity among surveys was high and the results varied between studied species groups. The site-scale detectability for species belonging to different groups varied from 10 to 95% depending on the survey month and the species group. We conclude that because detectability of many fungi turned out to be poor even when surveys were conducted at an optimal time, the common practice of using a single fruit body survey to estimate fungal diversity of any given area is not enough. We suggest that multiple surveys at an optimal time should be a norm in fungal diversity studies. Improper methodology results in unreliable outcomes that have potential to hamper our goal of conserving the biological diversity.

Keywords

Agarics Biodiversity Inventories Corticioids Detection probability Monitoring Polypores Saproxylic Seasonality Wood-decaying fungi 

Supplementary material

10531_2011_176_MOESM1_ESM.doc (302 kb)
Supplementary material 1 (DOC 301 kb)
10531_2011_176_MOESM2_ESM.doc (36 kb)
Supplementary material 2 (DOC 36 kb)

References

  1. Ahti T, Hämet-Ahti L, Jalas J (1968) Vegetation zones and their sections in northwestern Europe. Ann Bot Fenn 5:169–211Google Scholar
  2. Allmér J, Vasiliauskas R, Ihrmark K, Stenlid J, Dahlberg A (2006) Wood-inhabiting fungal communities in woody debris of Norway spruce (Picea abies (L.) Karst.), as reflected by sporocarps, mycelial isolations and T-RFLP identification. FEMS microbiol ecol 55:57–67PubMedCrossRefGoogle Scholar
  3. Bässler C, Müller J, Dziock F, Brandl R (2010) Effects of resource availability and climate on the diversity of wood-decaying fungi. J Ecol 98:822–832CrossRefGoogle Scholar
  4. Berglund H, Edman M, Ericson L (2005) Temporal variation of wood-fungi diversity in boreal old-growth forests: implications for monitoring. Ecol Appl 15:970–982CrossRefGoogle Scholar
  5. Boddy L, Jones TH (2008) Interactions between basidiomycota and invertebrates. In: Boddy L, Frankland JC, van West P (eds) Ecology of saprotrophic basidiomycetes. Elsevier, Amsterdam, pp 155–179CrossRefGoogle Scholar
  6. Boddy L, Frankland JC, Pv West (eds) (2008) Ecology of saprotrophic basidiomycetes. Elsevier, AmsterdamGoogle Scholar
  7. Dahlberg A, Mueller GM (2011) Applying IUCN red-listing criteria for assessing and reporting on the conservation status of fungal species. Fungal Ecol 4:147–162CrossRefGoogle Scholar
  8. de Boer W, van der Val A (2008) Interactions between saprotrophic basidiomycetes and bacteria. In: Boddy L, Frankland JC, van West P (eds) Ecology of saprotrphic basidiomycetes. Elsevier, Amsterdam, p 143Google Scholar
  9. Egli S, Peter M, Buser C, Stahel W, Ayer F (2006) Mushroom picking does not impair future harvests – results of a long-term study in Switzerland. Biol Conserv 129:271–276CrossRefGoogle Scholar
  10. Field SA, Tyre AJ, Possingham HP (2005) Optimizing allocation of monitoring effort under economic and observational constraints. J Wild Manag 69:473–482CrossRefGoogle Scholar
  11. Field SA, O’Connor PJ, Tyre AJ, Possingham HP (2007) Making monitoring meaningful. Austral Ecol 32:485–491CrossRefGoogle Scholar
  12. Gange AC, Gange EG, Sparks TH, Boddy L (2007) Rapid and recent changes in fungal fruiting patterns. Science 316:71PubMedCrossRefGoogle Scholar
  13. Garrard GE, Bekessy SA, McCarthy MA, Wintle BA (2008) When have we looked hard enough? A novel method for setting minimum survey effort protocols for flora surveys. Austral Ecol 33:986–998CrossRefGoogle Scholar
  14. Halme P, Kotiaho JS, Ylisirniö AL, Hottola J, Junninen K, Kouki J, Lindgren M, Mönkkönen M, Penttilä R, Renvall P, Siitonen J, Similä M (2009) Perennial polypores as indicators of annual and red-listed polypores. Ecol Indic 9:256–266CrossRefGoogle Scholar
  15. Hansen L, Knudsen H (1997) Nordic macromycetes vol 3, heterobasidioid, aphyllophoroid and gastromycetoid basidiomycetes. Nordsvamp, CopenhagenGoogle Scholar
  16. Hansen L, Knudsen H (2000) Nordic macromycetes vol 1 ascomycetes. Nordsvamp, CopenhagenGoogle Scholar
  17. Heilmann-Clausen J, Christensen M (2003) Fungal diversity on decaying beech logs – implications for sustainable forestry. Biodivers Conserv 12:953–973CrossRefGoogle Scholar
  18. Heilmann-Clausen J, Christensen M (2005) Wood-inhabiting macrofungi in Danish beech-forests–conflicting diversity patterns and their implications in a conservation perspective. Biol Conserv 122:633–642CrossRefGoogle Scholar
  19. Jönsson MT, Edman M, Jonsson BG (2008) Colonization and extinction patterns of wood-decaying fungi in a boreal old-growth Picea abies forest. J Ecol 96:1065–1075CrossRefGoogle Scholar
  20. Junninen K, Komonen A (2011) Conservation ecology of boreal polypores: a review. Biol Conserv 144:11–20CrossRefGoogle Scholar
  21. Juutilainen K, Halme P, Kotiranta H, Mönkkönen M (2011) Size matters in studies of dead wood and wood-inhabiting fungi. Fungal Ecol 4:342–349CrossRefGoogle Scholar
  22. Kauserud H, Stige LC, Vik JO, Okland RH, Høiland K, Stenseth NC (2008) Mushroom fruiting and climate change. PNAS 105:3811–3814PubMedCrossRefGoogle Scholar
  23. Kauserud H, Heegaard E, Semenov MA, Boddy L, Halvorsen R, Stige LC, Sparks TH, Gange AC, Stenseth NC (2010) Climate change and spring-fruiting fungi. Proc R Soc B 277:1169–1177PubMedCrossRefGoogle Scholar
  24. Kery M, Spillmann JH, Truong C, Holderegger R (2006) How biased are estimates of extinction probability in revisitation studies? J Ecol 94:980–986CrossRefGoogle Scholar
  25. Kleijn D, Baquero R, Clough Y, Diaz M, Esteban J, Fernandez F, Gabriel D, Herzog F, Holzschuh A, Jöhl R, Knop E, Kruess A, Marshall EJ, Steffan-Dewenter I, Tscharntke T, Verhulst J, West TM, Yela JL (2006) Mixed biodiversity benefits of agri-environment schemes in five European countries. Ecol Lett 9:243–254PubMedCrossRefGoogle Scholar
  26. Kotiranta H, Saarenoksa R, Kytövuori I (2009) Aphyllophoroid fungi of Finland. A check-list with ecology, distribution and threat categories. Norrlinia 19:1–223Google Scholar
  27. Kull T, Sammul M, Kull K, Lanno K, Tali K, Gruber B, Schmeller D, Henle K (2008) Necessity and reality of monitoring threatened European vascular plants. Biodivers Conserv 17:3383–3402CrossRefGoogle Scholar
  28. Kytövuori I, Nummela-Salo U, Ohenoja E, Salo P, Vauras J (2005) Helttasienten ja tattien ekologiataulukko. Ecology table of agarics and boletes in Finland. Suomen helttasienten ja tattien ekologia, levinneisyys ja uhanalaisuus (eds P. Salo, T. Niemelä, U. Nummela-Salo & E. Ohenoja), pp 228–426. Edita, HelsinkiGoogle Scholar
  29. Legg CJ, Nagy L (2006) Why most conservation monitoring is, but need not be, a waste of time. J Env Manag 78:194–199CrossRefGoogle Scholar
  30. Lengyel S, Kobler A, Kutnar L, Framstad E, Henry P, Babij V, Gruber B, Schmeller D, Henle K (2008) A review and a framework for the integration of biodiversity monitoring at the habitat level. Biodivers Conserv 17:3341–3356CrossRefGoogle Scholar
  31. Lodge DJ, Ammirati JF, O`Dell TE, Mueller GM (2004) Collecting and describing macrofungi. In: Mueller GM, Bills GF, Foster MS (eds) Biodiversity of fungi. Inventory and monitoring methods. Elsevier, London, pp 128–158Google Scholar
  32. Lõhmus A (2009) Factors of species-specific detectability in conservation assessments of poorly studied taxa: the case of polypore fungi. Biol Conserv 142:2792–2796CrossRefGoogle Scholar
  33. Mackenzie DI, Royle JA (2005) Designing occupancy studies: general advice and allocating survey effort. J Appl Ecol 42:1105–1114CrossRefGoogle Scholar
  34. MacKenzie DI, Nichols JD, Royle JA, Pollock KH, Bailey LL, Hines JE (2006) Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence. Elsevier, San DiegoGoogle Scholar
  35. Mönkkönen M, Ylisirniö A, Hämäläinen T (2009) Ecological efficiency of voluntary conservation of boreal-forest biodiversity. Conserv Biol 23:339–347PubMedCrossRefGoogle Scholar
  36. Mueller GM, Schmit JP (2007) Fungal biodiversity: what do we know? what can we predict? Biodivers Conserv 16:1–5CrossRefGoogle Scholar
  37. Mueller GM, Bills GF, Foster MS (eds) (2004) Biodiversity of fungi: inventory and monitoring methods. Elsevier, LondonGoogle Scholar
  38. Mueller GM, Schmit JP, Leacock PR, Buyck B, Cifuentes J, Desjardin DE et al (2007) Global diversity and distribution of macrofungi. Biodivers Conserv 16:37–48CrossRefGoogle Scholar
  39. Müller J, Engel H, Blaschke M (2007) Assemblages of wood-inhabiting fungi related to silvicultural management intensity in beech forests in southern Germany. Eur J For Res 126:513–527CrossRefGoogle Scholar
  40. Norstedt G, Bader P, Ericson L (2001) Polypores as indicators of conservation value in Corsican pine forests. Biol Conserv 99:347–354CrossRefGoogle Scholar
  41. Ovaskainen O, Nokso-Koivisto J, Hottola J, Rajala T, Pennanen T, Ali-Kovero H, Miettinen O, Oinonen P, Auvinen P, Paulin L, Larsson KH, Mäkipää R (2010) Identifying wood-inhabiting fungi with 454 sequencing–what is the probability that BLAST gives the correct species? Fungal Ecol 3:274–283CrossRefGoogle Scholar
  42. Parker-Rhodes AF (1955) Statistical aspects of fungus forays. Trans Brit Mycol Soc 38:283–290CrossRefGoogle Scholar
  43. Possingham HP, Grantham H, Rondinini C (2007) How can you conserve species haven’t been found? J Biogeogr 34:758–759CrossRefGoogle Scholar
  44. Pouska V, Svoboda M, Lepšová A (2010) The diversity of wood-decaying fungi in relation to changing site conditions in an old-growth mountain spruce forest, central Europe. Eur J For Res 129:219–231CrossRefGoogle Scholar
  45. Rhodes JR, Tyre AJ, Jonzen N, McAlpine CA, Possingham HP (2006) Optimizing presence-absence surveys for detecting population trends. J Wild Manag 70:8–18CrossRefGoogle Scholar
  46. Sastre P, Lobo JM (2009) Taxonomist survey biases and the unveiling of biodiversity patterns. Biol Conserv 142:462–467CrossRefGoogle Scholar
  47. Schigel DS, Niemelä T, Kinnunen J (2006) Polypores of western Finnish Lapland and seasonal dynamics of polypore beetles. Karstenia 46:37–64Google Scholar
  48. Schmit JP (2005) Species richness of tropical wood-inhabiting macrofungi provides support for species-energy theory. Mycologia 97:751–761PubMedCrossRefGoogle Scholar
  49. Schmit JP, Murphy JF, Mueller GM (1999) Macrofungal diversity of a temperate oak forest: a test of species richness estimators. Can J Bot 77:1014–1027Google Scholar
  50. Straatsma G, Ayer F, Egli S (2001) Species richness, abundance, and phenology of fungal fruit bodies over 21 years in a swiss forest plot. Mycol Res 105:515–523CrossRefGoogle Scholar
  51. Vasiliauskas R, Vasiliauskas A, Stenlid J, Matelis A (2004) Dead trees and protected polypores in unmanaged north-temperate forest stands of Lithuania. For Ecol Manag 193:355–370CrossRefGoogle Scholar
  52. Yoccoz NG, Nichols JD, Boulinier T (2001) Monitoring of biological diversity in space and time. Tree 16:446–453Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Centre of Excellence in Evolutionary Research, Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
  2. 2.Natural History MuseumUniversity of JyväskyläJyväskyläFinland

Personalised recommendations