Biodiversity and Conservation

, Volume 20, Issue 14, pp 3549–3553 | Cite as

Predation by zooplankton on Batrachochytrium dendrobatidis: biological control of the deadly amphibian chytrid fungus?

  • Julia C. BuckEmail author
  • Lisa Truong
  • Andrew R. Blaustein
Brief Communication


Batrachochytrium dendrobatidis (hereafter Batrachochytrium), a fungal pathogen of amphibians, causes the disease chytridiomycosis which is responsible for unprecedented population declines and extinctions globally. Host defenses against chytridiomycosis include cutaneous symbiotic bacteria and anti-microbial peptides, and proposed treatment measures include use of fungicides and bioaugmentation. Efforts to eradicate the fungus from localized areas of disease outbreak have not been successful. Instead, control measures to mitigate the impacts of the disease on host populations, many of which are already persisting with Batrachochytrium in an endemic state, may be more realistic. The infective stage of the fungus is an aquatic zoospore, 3–5 μm in diameter. Here we show that zoospores of Batrachochytrium are consumed by the zooplankter Daphnia magna. This species inhabits amphibian breeding sites where Batrachochytrium transmission occurs, and consumption of Batrachochytrium zoospores may lead to effective biological control of Batrachochytrium.


Amphibian chytrid fungus Batrachochytrium dendrobatidis Biological control Daphnia magna Zooplankton 



We acknowledge the Tanguay, Spatafora, and Taylor laboratories of Oregon State University for use of space and equipment, and especially B. Taylor for assistance. This material is based upon work supported under a National Science Foundation Graduate Research Fellowship to J.C.B. Additional funding was provided by NSF (DEB0213851 and IBN9977063).


  1. Boyle DG, Boyle DB, Olsen V, Morgan JAT, Hyatt AD (2004) Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Dis Aquat Org 60:141–148PubMedCrossRefGoogle Scholar
  2. Briggs CJ, Knapp RA, Vredenburg VT (2010) Enzootic and epizootic dynamics of the chytrid fungal pathogen of amphibians. PNAS 107:9695–9700PubMedCrossRefGoogle Scholar
  3. Cory JS, Myers JH (2000) Direct and indirect ecological effects of biological control. TREE 15:137–139Google Scholar
  4. Ibelings BW, Gsell AS, Mooij WM, Van Donk E, Van Den Wyngaert S, De Senerpont Domis LN (2011) Chytrid infections and diatom spring blooms: paradoxical effects of climate warming on fungal epidemics in lakes. Freshwater Biol 56:754–766CrossRefGoogle Scholar
  5. Johnson PTJ, Dobson A, Lafferty KD, Marcogliese DJ, Memmott J, Orlofske SA, Poulin R, Thieltges DW (2010) When parasites become prey: ecological and epidemiological significance of eating parasites. TREE 25:362–371PubMedGoogle Scholar
  6. Kagami M, Van Donk E, de Bruin A, Rijkeboer M, Ibelings BW (2004) Daphnia can protect diatoms from fungal parasitism. Limnol Oceanogr 49:680–685CrossRefGoogle Scholar
  7. Kagami M, von Elert E, Ibelings BW, de Bruin A, Van Donk E (2007) The parasitic chytrid, Zygorhizidium, facilitates the growth of the cladoceran zooplankter, Daphnia, in cultures of the inedible alga. Asterionella Proc R Soc B 274:1561–1566CrossRefGoogle Scholar
  8. Keesing F, Holt RD, Ostfeld RS (2006) Effects of species diversity on disease risk. Eco Lett 9:485–498CrossRefGoogle Scholar
  9. Longcore JE, Pessier AP, Nichols DK (1999) Batrachochytrium dendrobatidis, gen et sp nov a chytrid pathogenic to amphibians. Mycol 91:219–227CrossRefGoogle Scholar
  10. Lubick N (2010) Emergency medicine for frogs. Nature 465:680–681PubMedCrossRefGoogle Scholar
  11. McCallum ML (2007) Amphibian decline or extinction? Current declines dwarf background extinction rate. J Herpetol 41:483–491CrossRefGoogle Scholar
  12. Mendelson JR III, Lips KR, Gagliardo RW, Rabb GB, Collins JP, Diffendorfer JE, Daszak P, Ibanez R, Zippel KC, Laweson DP, Wright KM, Stuart SN, Gascon C, da Silva HR, Burrowes PA, Joglar RL, La Marca E, Lotters S, du Preez LH, Weldon C, Hyatt A, Rodriguez-Mahecha JV, Hunt S, Robertson H, Lock B, Raxworthy CJ, Frost DR, Lacy RC, Alford RA, Campbell JA, Parra-Olea G, Bolanos F, Domingo JJC, Halliday T, Murphy JB, Wake MH, Coloma LA, Kuzmin SL, Price MS, Howell KM, Lau M, Pethiyagoda R, Boone M, Lannoo MJ, Blaustein AR, Dobson A, Griffiths RA, Crump ML, Wake DB, Brodie ED (2006) Biodiversity—Confronting amphibian declines and extinctions. Science 313:48PubMedCrossRefGoogle Scholar
  13. Skerratt LF, Berger L, Speare R, Cashins S, McDonald KR, Phillott AD, Hines HB, Kenyon N (2007) Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. Ecohealth 4:125–134CrossRefGoogle Scholar
  14. Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ALS, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786PubMedCrossRefGoogle Scholar
  15. Thorp JH, Covich AP (2010) Ecology and classification of North American freshwater invertebrates, 3rd edn. Academic Press, San DiegoGoogle Scholar
  16. Vredenburg VT, Knapp RA, Tunstall TS, Briggs CJ (2010) Dynamics of an emerging disease drive large-scale amphibian population extinctions. PNAS 107:9689–9694PubMedCrossRefGoogle Scholar
  17. Woodhams DC, Bosch J, Briggs CJ, Cashins S, Davis LR, Lauer A, Muths E, Puschendorf R, Schmidt BR, Sheafor B, Voyles J (2011) Mitigating amphibian disease: strategies to maintain wild populations and control chytridiomycosis. Front Zool 8. doi:10.1186/1742-9994-8-8 (in press)

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Julia C. Buck
    • 1
    Email author
  • Lisa Truong
    • 2
  • Andrew R. Blaustein
    • 1
  1. 1.Zoology DepartmentOregon State UniversityCorvallisUSA
  2. 2.Environmental and Molecular Toxicology DepartmentOregon State UniversityCorvallisUSA

Personalised recommendations