Biodiversity and Conservation

, Volume 20, Issue 13, pp 3147–3164 | Cite as

Effects of stream restorations on riparian mesohabitats, vegetation and carabid beetles

  • Kathrin Januschke
  • Stefan Brunzel
  • Peter Haase
  • Daniel Hering
Original Paper


We investigated the effects of hydromorphological restoration measures (mainly the removal of bank fixations) on riparian mesohabitats, vegetation and carabid beetles by comparing 24 restored to nearby non-restored floodplain sections in Germany. Mesohabitats were recorded along ten equally-spaced transects, plant communities and riparian plant and carabid beetle species along three transects per section. Based on 18 indices including habitat and species diversity, taxonomic diversity and functional indices we compared the frequency and magnitude of changes following restoration, both for the overall dataset and for each site individually. Riparian habitat diversity doubled in restored sections compared to non-restored sections. The numbers of vegetation units and plant and carabid beetle species richness also doubled in restored sections, whereas changes in Shannon diversity were most pronounced for mesohabitats and riparian plants. Taxonomic diversity of carabid beetles decreased in restored sections reflecting post restoration dominance of riparian Bembidion species. Stress-tolerant pioneers of plant and especially carabid species benefit strongly from the re-establishment of open sand and gravel bars, while hygrophilous species, which also include non-riparian species, did not respond to restoration. We conclude that restoring river hydromorphology has almost generally positive effects on riparian habitats and riparian biodiversity. Riparian biota are thus well-suited indicators for the effects of hydromorphological restoration.


Hydromorphology Riparian organisms Richness Diversity Stress-tolerant pioneers Hygrophilous species Colonization Dispersal ability 



This study was supported by Bundesamt für Naturschutz (FKZ 3507 85 050-K1) and Deutsche Bundesstiftung Umwelt (FK 25032-33/2). We thank researchers of the Department of Limnology and Conservation, Research Institute and Natural History Museum Senckenberg for the realization of field work on some streams in Hesse. We are grateful to Sonja Jähnig for providing data on three restoration measures at the Lahn and to Karsten Hannig for his support in carabid identification.

Supplementary material

10531_2011_119_MOESM1_ESM.doc (222 kb)
Supplementary material 1 (DOC 221 kb)


  1. Andersen J (1970) Habitat choice and life history of Bembidiini (Col., Carabidae) on river banks in central and northern Norway. Norsk ent Tidsskr 17:17–65Google Scholar
  2. Andersen J (1978) The influence of the substratum on the habitat selection of Bembidiini (Col., Carabidae). Norw J Entomol 25:119–138Google Scholar
  3. Andersen J (1985) Ecomorphological adaptations of riparian Bembidiini species (Coleoptera, Carabidae). Entomologica Generali 12:41–46Google Scholar
  4. Andersson E, Nilsson C, Johansson M (2000) Effects of river fragmentation on plant dispersal and riparian flora. Regul Rivers Res Manag 89:83–89CrossRefGoogle Scholar
  5. Baattrup-Pedersen A, Riis T, Hansen HO, Friberg N (2000) Restoration of a Danish headwater stream: short-term changes in plant species abundance and composition. Aquatic Conserv Mar Freshw Ecosyst 10:13–23CrossRefGoogle Scholar
  6. Baattrup-Pedersen A, Friberg N, Larsen SE, Riis T (2005) The influence of channelisation on riparian plant assemblages. Freshw Biol 50:1248–1261CrossRefGoogle Scholar
  7. Barber HS (1931) Traps for cave inhabiting insects. J El Mit Sci Soc 46:259–266Google Scholar
  8. Bates AJ, Sadler JP, Fowles AP (2006) Condition-dependent dispersal of a patchily distributed riparian ground beetle in response to disturbance. Oecologia 150:50–60PubMedCrossRefGoogle Scholar
  9. Bonn A, Hagen K, Wohlgemuth-von Reiche D (2002) The significance of flood regimes for carabid beetle and spider communities in riparian habitats - a comparison of three major rivers in Germany. River Res Applic 18:43–64CrossRefGoogle Scholar
  10. Burkart M (2001) River corridor plants (Stromtalpflanzen) in Central European lowland: a review of a poorly understood plant distribution pattern. Global Ecol Biogeogr 10:449–468CrossRefGoogle Scholar
  11. Den Boer PJ (1970) On the significance of dispersal power for populations of carabid-beetles (Coleoptera, Carabidae). Oecol 4:1–28CrossRefGoogle Scholar
  12. Den Boer PJ (1990) Density limits and survival of local populations in 64 carabid species with different powers of dispersal. J Evol Biol 3:19–48CrossRefGoogle Scholar
  13. Desender K (1989) Ecomorphological adaptations of riparian carabid beetles. In: Wouters K, Baert L (eds) Verhandelingen van het Symposium “Invertebraten van België”. Koninklijk Belgisch Instituut voor Natuurwetenschappen, Brussels, Belgium, pp 309–314Google Scholar
  14. Desender K (2000) Flight muscle development and dispersal in the life cycle of carabid beetles: patterns and processes. Bulletin van het Koninklijk Belgisch Instituut voor Natuurwetenschappen. Entomologie 70:13–31Google Scholar
  15. Diekmann M (2003) Species indicator values as an important tool in applied plant ecology–a review. Basic Appl Ecol. 4:493–506CrossRefGoogle Scholar
  16. DWD (2010) Climate data for Germany per regions: Time series of regional means. Cited 16 Jun 2011
  17. Ellenberg H (1974) Zeigerwerte der Gefäßpflanzen Mitteleuropas. Scr Geobot 9:1–97Google Scholar
  18. Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. 5. Auflage, Ulmer-Verlag, StuttgartGoogle Scholar
  19. Eyre MD, Luff ML, Phillips DA (2001) The ground beetles (Coleoptera: Carabidae) of exposed riverine sediments in Scotland and northern England. Biodivers Conserv 10:403–426CrossRefGoogle Scholar
  20. Follner K, Henle K (2006) The performance of plants, molluscs, and carabid beetles as indicators of hydrological conditions in floodplain grasslands. Int Rev Hydrobiol 91:364–379CrossRefGoogle Scholar
  21. Gerisch M (2011) Habitat disturbance and hydrological parameters determine the body size and reproduction strategy of alluvial ground beetles. Zookeys 100:353–370PubMedGoogle Scholar
  22. Gerisch M, Schanowski A, Figura W, Gerken B, Dziock F, Henle K (2006) Carabid beetles (Coleoptera, Carabidae) as indicators of hydrological site conditions in floodplain grasslands. Int Rev Hydrobiol 91:326–340CrossRefGoogle Scholar
  23. Gesellschaft für Angewandte Carabidologie (2009) Lebensraumpräferenzen der Laufkäfer Deutschlands–Wissensbasierter Katalog. Angew Carab Suppl 5:45Google Scholar
  24. Gilvear D, Willby N (2006) Channel dynamics and geomorphic variability as controls on gravel bar vegetation; River Tummel, Scotland. River Res Appl 22:457–474CrossRefGoogle Scholar
  25. Godreau V, Bornette G, Frochot B, Amoros C, Castella E, Oertli B, Chambaud F, Oberti D, Craney E (1999) Biodiversity in the floodplain of Saone: a global approach. Biodivers Conserv 8:839–864CrossRefGoogle Scholar
  26. Greenwood MT, Bickerton MA, Castella E, Large ARG, Petts GE (1991) The use of coleoptera (arthropoda: insecta) for floodplain characterization on the River Trent, UK. Regul Rivers Res Manag 6:321–332CrossRefGoogle Scholar
  27. Günther J, Assmann T (2005) Restoration ecology meets carabidology: effects of floodplain restitution on ground beetles (Coleoptera, Carabidae). Biodivers Conserv 14:1583–1606CrossRefGoogle Scholar
  28. Gurnell A, Goodson J, Thompson K, Clifford N, Armitage P (2007) The river-bed: a dynamic store for plant propagules? Earth Surf Proc Land 32:1257–1272CrossRefGoogle Scholar
  29. Hering D, Borja A, Carstensen J, Carvalho L, Elliott M, Feld CK, Heiskanen A-S, Johnson RK, Moe J, Pont D, Solheim AL, Van de Bound W (2010) The European Water Framework Directive at the age of 10: a critical review of the achievements with recommendations for the future. Sci Total Environ 408:4007–4019PubMedCrossRefGoogle Scholar
  30. Jähnig SC, Lorenz AW, Hering D (2008) Hydromorphological parameters indicating differences between single-and multiple-channel mountain rivers in Germany, in relation to their modification and recovery. Aquatic Conserv Mar Freshw Ecosyst 18:1200–1216CrossRefGoogle Scholar
  31. Jähnig SC, Brunzel S, Gacek S, Lorenz AW, Hering D (2009) Effects of re-braiding measures on hydromorphology, floodplain vegetation, ground beetles and benthic invertebrates in mountain rivers. J Appl Ecol 46:406–416CrossRefGoogle Scholar
  32. Johansson ME, Nilsson C, Nilsson E (1996) Do rivers function as corridors for plant dispersal? J Veg Sci 7:593–598CrossRefGoogle Scholar
  33. Klotz S, Kühn I (2002) Ökologische Strategietypen. Schriftenreihe für Vegetationskunde, Bundesamt für Naturschutz, Bonn 38:197–201Google Scholar
  34. Koch K (1989) Die Käfer Mitteleuropas. Ökologie. Band E1. Carabidae–Micropeplidae. Spektrum Akademischer Verlag, Heidelberg, p 440Google Scholar
  35. Kotze DJ, Brandmayr P, Casale A, Dekoninck W, Koivula MJ, Lövei GL, Mossakowski D, Noordijk J, Paarmann W, Pizzolotto R, Saska P, Schwerk A, Serrano J, Szyszko J, Taboada A, Turin H, Venn S, Vermeulen R, Zetto T (2011) Forty years of carabid beetle research in Europe—from taxonomy, biology, ecology and population studies to bioindication, habitat assessment and conservation. Zookeys 100:55–148PubMedCrossRefGoogle Scholar
  36. Lambeets K, Vandegehuchte ML, Maelfait J-P, Bonte D (2008a) Understanding the impact of flooding on trait-displacements and shifts in assemblage structure of predatory arthropods on river banks. J Anim Ecol 77:1162–1174PubMedCrossRefGoogle Scholar
  37. Lambeets K, Hendrickx F, Vanacker S, Van Looy K, Maelfait J-P, Bonte D (2008b) Assemblage structure and conservation value of spiders and carabid beetles from restored lowland river banks. Biodivers Conserv 17:3133–3148CrossRefGoogle Scholar
  38. Lambeets K, Vandegehuchte ML, Maelfait J-P, Bonte D (2009) Integrating environmental conditions and functional life-history traits for riparian arthropod conservation planning. Biol Conserv 142:625–637CrossRefGoogle Scholar
  39. Manderbach R, Hering, D (2001) Typology of riparian ground beetle communities (Coleoptera, Carabidae, Bembidion spec.) in Central Europe and adjacent areas. Arch Hydrobiol 4:583–608Google Scholar
  40. Müller-Motzfeld G (2004) Adephaga 1: Carabidae (Laufkäfer). In: Freude H, Harde KW, Lohse GA, Klausnitzer B (eds) Die Käfer Mitteleuropas Bd. 2. Spektrum Verlag, HeidelbergGoogle Scholar
  41. Naiman RJ, Décamps H (1997) The ecology of interfaces: riparian zones. Annu Rev Ecol Syst 28:621–658CrossRefGoogle Scholar
  42. Naiman RJ, Décamps H, McClain ME (2005) Riparia—ecology, conservation, and management of streamside communities. Elsevier Academic Press, San DiegoGoogle Scholar
  43. Nilsson C, Svedmark M (2002) Basic principles and ecological consequences of changing water regimes: riparian plant communities. Environ Manag 30:468–480CrossRefGoogle Scholar
  44. Oberdorfer E (1983, 1992) Süddeutsche Pflanzengesellschaften. Teil I-III. Fischer, Stuttgart, GermanyGoogle Scholar
  45. Paetzold A, Yoshimura C, Tockner K (2008) Riparian arthropod responses to flow regulation and river channelization. J Appl Ecol 45:894–903CrossRefGoogle Scholar
  46. Palmer MA, Menninger HL, Bernhardt E (2010) River restoration, habitat heterogeneity and biodiversity: a failure of theory or practice? Freshw Biol 55:205–222CrossRefGoogle Scholar
  47. Rainio J, Niemelä J (2003) Ground beetles (Coleoptera: Carabidae) as bioindicators. Biol Conserv 12:487–506CrossRefGoogle Scholar
  48. Raven PJ, Fox P, Everard M, Holmes NTH, Dawson FH (1997) River habitat survey: a new system for classifying rivers according to their habitat quality. In: Boon PJ, Howell DL (eds) Freshwater quality: defining the indefinable. The Stationary Office Edinburgh, Edinburgh, pp 215–234Google Scholar
  49. Renner K (1980) Faunistisch-ökologische Untersuchungen der Käferfauna pflanzensoziologisch unterschiedlicher Biotope im Evessell-Bruch bei Bielefeld-Sennestadt. Berichte des Naturwissenschaftlichen Vereins Bielefeld Sonderheft 2:145–176Google Scholar
  50. Renöfält BM, Nilsson C, Jansson R (2005) Spatial and temporal patterns of species richness in a riparian landscape. J Biogeogr 32:2025–2037CrossRefGoogle Scholar
  51. Riis T (2008) Dispersal and colonisation of plants in lowland streams: success rates and bottlenecks. Hydrobiologia 596:341–351CrossRefGoogle Scholar
  52. Rohde S, Schütz M, Kienast F, Englmaier P (2005) River widening: an approach to restoring riparian habitats and plant species. River Res Appl 21:1075–1094CrossRefGoogle Scholar
  53. Sadler J, Bell D, Fowles A (2004) The hydroecological controls and conservation value of beetles on exposed riverine sediments in England and Wales. Biol Conserv 118:41–56CrossRefGoogle Scholar
  54. Soons MB (2006) Wind dispersal in freshwater wetlands: knowledge for conservation and restoration. Appl Veg Sci 9:271–278CrossRefGoogle Scholar
  55. Tabacchi E, Correll DL, Hauer R, Pinay G, Planty-Tabacchi A-M, Wissmar RC (1998) Development, maintenance and role of riparian vegetation in the river landscape. Freshw Biol 40:497–516CrossRefGoogle Scholar
  56. Tockner K, Bunn SE, Gordon C, Naiman RJ, Quinn GP, Stanford JA (2008) Flood plains: critically threatened ecosystems. In: Polunin NVC (ed) Aquatic ecosystems. Trends and global prospects. Cambridge University Press, New York, pp 45–61CrossRefGoogle Scholar
  57. Trautner J (1992) Laufkäfer - Methoden der Bestandsaufnahme und Hinweise für die Auswertung bei Naturschutz- und Eingriffsplanungen. In: Trautner J (ed) Arten- und Biotopschutz in der Planung: Methodische Standards zur Erfassung von Tierartengruppen [BVDL-Tagung Bad Wurzach, 9.-10. November 1991]. Ökologie in Forschung und Anwendung 5:145–162Google Scholar
  58. Trautner J (1999) Handfänge als effektive und vergleichbare Methode zur Laufkäfer-Erfassung an Fließgewässern—Ergebnisse eines Test an der Aich (Baden-Württemberg). Angew Carab Suppl 1:139–144Google Scholar
  59. Van Looy K, Vanacker S, Jochems H, De Blust G, Dufrêne M (2005) Ground beetle habitat templets and riverbank integrity. River Res Appl 21:1133–1146CrossRefGoogle Scholar
  60. Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) River continuum concept. Can J Fish Aquat Sci 37:130–137CrossRefGoogle Scholar
  61. Warwick RM, Clarke KR (1995) New “biodiversity” measures reveal a decrease in taxonomic distinctness with increasing stress. Mar Ecol Prog 129:301–305CrossRefGoogle Scholar
  62. WFD (2000) Water Framework Directive (2000/60/EC). Cited 26 Jan 2011
  63. Wintle BC, Kirkpatrick JB (2007) The response of riparian vegetation to flood-maintained habitat heterogeneity. Austral J Ecol 32:592–599CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Kathrin Januschke
    • 1
  • Stefan Brunzel
    • 2
  • Peter Haase
    • 3
  • Daniel Hering
    • 1
  1. 1.Department of Applied Zoology/HydrobiologyUniversity of Duisburg-EssenEssenGermany
  2. 2.Department of Animal EcologyPhilipps-Universität MarburgMarburgGermany
  3. 3.Department of Limnology and ConservationResearch Institute and Natural History Museum SenckenbergGelnhausenGermany

Personalised recommendations