Biodiversity and Conservation

, Volume 20, Issue 9, pp 1911–1920 | Cite as

Species-level correlates of susceptibility to the pathogenic amphibian fungus Batrachochytrium dendrobatidis in the United States

  • Betsy A. Bancroft
  • Barbara A. Han
  • Catherine L. Searle
  • Lindsay M. Biga
  • Deanna H. Olson
  • Lee B. Kats
  • Joshua J. Lawler
  • Andrew R. Blaustein
Original Paper

Abstract

Disease is often implicated as a factor in population declines of wildlife and plants. Understanding the characteristics that may predispose a species to infection by a particular pathogen can help direct conservation efforts. Recent declines in amphibian populations world-wide are a major conservation issue and may be caused in part by a fungal pathogen, Batrachochytrium dendrobatidis (Bd). We used Random Forest, a machine learning approach, to identify species-level characteristics that may be related to susceptibility to Bd. Our results suggest that body size at maturity, aspects of egg laying behavior, taxonomic order and family, and reliance on water are good predictors of documented infection for species in the continental United States. These results suggest that, whereas local-scale environmental variables are important to the spread of Bd, species-level characteristics may also influence susceptibility to Bd. The relationships identified in this study suggest future experimental tests, and may target species for conservation efforts.

Keywords

Amphibian Batrachochytrium dendrobatidis Body size Infection Life-history pathogen 

Abbreviations

Bd

Batrachochytrium dendrobatidis

RF

Random forest

OOB

Out of bag

References

  1. Altizer S, Nunn CL, Thrall PH et al (2003) Social organization and parasite risk in mammals: integrating theory and empirical studies. Annu Rev Ecol Evol Syst 34:517–547CrossRefGoogle Scholar
  2. Berger L, Speare R, Daszak P et al (1998) Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proc Nat Acad Sci 95:9031–9036PubMedCrossRefGoogle Scholar
  3. Bielby J, Cooper N, Cunningham AA et al (2008) Predicting susceptibility to future declines in the world’s frogs. Conserv Lett 1:82–90CrossRefGoogle Scholar
  4. Bielby J, Cardillo M, Cooper N et al (2010) Modelling extinction risk in multispecies data sets: phylogenetically independent contrasts versus decision trees. Biodivers Conserv 19:113–127CrossRefGoogle Scholar
  5. Blaustein AR, Romansic JM, Scheessele EA et al (2005) Interspecific variation in susceptibility of frog tadpoles to the pathogenic fungus Batrachochytrium dendrobatidis. Conserv Biol 19:1460–1468CrossRefGoogle Scholar
  6. Bosch J, Martinez-Solano I, Garcia-Paris M (2001) Evidence of a chytrid fungus infection involved in the decline of the common midwife toad (Alytes obstetricans) in protected areas of central Spain. Biol Conserv 97:331–337CrossRefGoogle Scholar
  7. Bradley GA, Rosen PC, Sredl MJ, Jones et al (2002) Chytridiomycosis in native Arizona frogs. J Wildlife Dis 38:206–212Google Scholar
  8. Breiman L (2001) Random forests. Mach Learn 45:5–32CrossRefGoogle Scholar
  9. Daszak P, Cunningham AA, Hyatt AD (2003) Infectious disease and amphibian population declines. Diversity Distrib 9:141–150CrossRefGoogle Scholar
  10. Daszak P, Strieby A, Cunningham AA et al (2004) Experimental evidence that the bullfrog (Rana catesbeiana) is a potential carrier of chytridiomycosis. An emerging fungal disease of amphibians. Herpetol J 14:201–207Google Scholar
  11. Garcia TS, Romansic JM, Blaustein AR (2006) Survival of three species of anuran metamorphs exposed to UV-B radiation and the pathogenic fungus Batrachochytrium dendrobatidis. Dis Aquat Organ 72:163–169PubMedCrossRefGoogle Scholar
  12. Halliday T, Tejedo M (1995) Intrasexual selection and alternative mating behavior. In: Heatwole H, Sullivan BK (eds) Amphibian biology: social behaviour, vol 2. Surrey Beatty & Sons PTY Limited. Chipping Norton, NSW, AustraliaGoogle Scholar
  13. Kiesecker JM, Blaustein AR (1997) Influences of egg laying behavior on pathogenic infection of amphibian eggs. Conserv Biol 11:214–220CrossRefGoogle Scholar
  14. Kuris AM, Blaustein AR, Alio JJ (1980) Hosts as islands. Am Nat 116:570–586CrossRefGoogle Scholar
  15. Lannoo M (ed) (2005) Amphibian declines. The conservation status of United States species. University of California Press, Berkely, CA, USAGoogle Scholar
  16. LeClair R, Lauren G (1996) Growth and body size in population of mink frogs Rana septentrionalis from two latitudes. Ecography 19:296–304Google Scholar
  17. Liaw A, Wiener M (2002) Classification and regression by random. Forest R News 2(3):18–22Google Scholar
  18. Lips KR, Brem F, Brenes R et al (2006) Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. Proc Natl Acad Sci USA 103:3165–3170PubMedCrossRefGoogle Scholar
  19. Longcore JE, Pessier AP, Nichols DK (1999) Batrachochytrium dendrobatidis gen. et sp. nov., a chytrid pathogenic to amphibians. Mycologia 91:219–227CrossRefGoogle Scholar
  20. Lunetta KL, Hayward LB, Segal J et al (2004) Screening large-scale association study data: exploiting interactions using random forests. BMC Genet 5:32PubMedCrossRefGoogle Scholar
  21. Morrison C, Hero J-M, Browning J (2004) Altitudinal variation in the age at maturity, longevity, and reproductive lifespan of anurans in subtropical Queensland. Herpetologica 60:34–44CrossRefGoogle Scholar
  22. Padgett-Flohr GE, Longcore JE (2007) Taricha torosa (California newt), fungal infection. Herpetol Rev 78:176–177Google Scholar
  23. Piotrowski JS, Annis SL, Longcore JE (2004) Physiology of Batrachochytrium dendrobatidis, a chytrid pathogen of amphibians. Mycologia 96:9–15PubMedCrossRefGoogle Scholar
  24. Rachowicz LJ, Briggs CJ (2007) Quantifying the disease transmission function: effects of density on Batrachochytrium dendrobatidis transmission in the mountain yellow-legged frog Rana muscosa. J Anim Ecol 76:711–721PubMedCrossRefGoogle Scholar
  25. Rachowicz LJ, Vredenburg VT (2004) Transmission of Batrachochytrium dendrobatidis within and between amphibian life stages. Dis Aquat Organ 61:75–83PubMedCrossRefGoogle Scholar
  26. Rachowicz LJ, Knapp RA, Morgan JAT et al (2006) Emerging infectious disease as a proximate cause of amphibian mass mortality. Ecology 87:1671–1683PubMedCrossRefGoogle Scholar
  27. Rödder D, Kielgast J, Bielby J et al (2009) Global amphibian extinction risk assessment for the panzootic chytrid fungus. Diversity 1:52–66CrossRefGoogle Scholar
  28. Ron S (2005) Predicting the distribution of the amphibian pathogen Batrachochytrium dendrobatidis in the New World. Biotropica 37:209–221CrossRefGoogle Scholar
  29. Smith KG, Weldon C (2007) A conceptual framework for detecting oral chytridiomycosis in tadpoles. Copeia 2007:1024–1028CrossRefGoogle Scholar
  30. Stuart SN, Chanson JS, Cox NA et al (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786PubMedCrossRefGoogle Scholar
  31. Wake DB, Vredenburg VT (2008) Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc Natl Acad Sci USA 105:11466–11473PubMedCrossRefGoogle Scholar
  32. Wells KD (1977) The social behavior of anuran amphibians. Anim Behav 24:666–693CrossRefGoogle Scholar
  33. Wells KD (2007) The biology and behavior of amphibians. The University of Chicago Press, Chicago, Illinois, USAGoogle Scholar
  34. Whiles MR, Lips KR, Pringle CM et al (2006) The effects of amphibian population declines on the structure and function of Neotropical stream ecosystems. Front Ecol Environ 4:27–34CrossRefGoogle Scholar
  35. Woodhams DC, Alford RA (2005) Ecology of chytridiomycosis in rainforest stream frog assemblages of tropical Queensland. Conserv Biol 19:1449–1459CrossRefGoogle Scholar
  36. Woodhams DC, Alford RA, Briggs CJ et al (2008) Life-history trade-offs influence disease in changing climates: strategies of an amphibian pathogen. Ecology 89:1627–1639PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Betsy A. Bancroft
    • 1
    • 6
  • Barbara A. Han
    • 2
  • Catherine L. Searle
    • 3
  • Lindsay M. Biga
    • 3
  • Deanna H. Olson
    • 4
  • Lee B. Kats
    • 5
  • Joshua J. Lawler
    • 1
  • Andrew R. Blaustein
    • 3
  1. 1.School of Forest ResourcesUniversity of WashingtonSeattleUSA
  2. 2.Odum School of EcologyUniversity of GeorgiaAthensGreece
  3. 3.Department of ZoologyOregon State UniversityCorvallisUSA
  4. 4.USDA Forest ServicePacific Northwest Research StationCorvallisUSA
  5. 5.Natural Science Division, Seaver CollegePepperdine UniversityMalibuUSA
  6. 6.Department of BiologySouthern Utah UniversityCedar CityUSA

Personalised recommendations