Advertisement

Biodiversity and Conservation

, Volume 20, Issue 8, pp 1713–1729 | Cite as

Cave lithology determining the structure of the invertebrate communities in the Brazilian Atlantic Rain Forest

  • Marconi Souza Silva
  • Rogério Parentoni Martins
  • Rodrigo Lopes FerreiraEmail author
Original paper

Abstract

In Brazil, only limestone caves and a few caves in sandstone, iron ore and granite rocks had their invertebrate communities evaluated. Being such, the present study aimed to promote a comparative analysis of the structure of the invertebrate communities in caves associated to carbonatic, magmatic, siliciclastic and ferruginous rocks of the Brazilian Atlantic forest. Significant differences in the relative richness, abundance and diversity were observed between lithologies. The average relative richness was higher in the ferruginous caves (0.53 spp). The total number of troglomorphic species was significantly different among caves and the highest average richness occurred at ferruginous caves (5.79 spp/cave). Siliciclastic, carbonatic and magmatic caves presented a higher quantitative similarity of the fauna. Ferruginous caves revealed communities with a fauna composition different from the other lithologies. The total richness of invertebrates correlated significantly and positively with the linear development in the siliciclastic caves (Rs = 0.67, P < 0.05), carbonatic (Rs = 0.71, P < 0.05) and ferruginous (Rs = 0.74, P < 0.05). The rock type in which the cave is inserted can determine differences in the richness of invertebrate troglophyles and troglobites. Therefore, on creating value attributes, the size of the caves should always come related to their lithology by the fact that same sized caves associated to different lithologies, possess communities with quite diverse structures.

Keywords

Caves Invertebrates Diversity Litology Atlantic Forest 

Notes

Acknowledgments

The authors thank the Critical Ecossystem Partnership Fund (CEPF), Aliança para a conservação da Mata Atlântica, Conservação Internacional (CI), IBAMA-CECAV, Sociedade Brasileira de espeleologia (SBE), S.O.S. Mata Atlântica, Grupo de Espeleologia Centro da Terra, Empresa de Assistência Técnica e Extensão Rural (Emater, MG), Estação de Biologia Marinha Ruschi, Grupo de Estudos Ambientais da Serra do Mar (Gesmar), Instituto Estadual de Florestas (IEF), and Instituto de Defesa Agropecuária e Florestal (IDAF, ES). We would also like to thank those who helped in collections, data analyses and fauna identification (Felipe, Maysa, Danielle, Marcela, Vanessa, Érika, Leopoldo, Thaís do Carmo, Thais Pellegrini, Paulo Pompeu, Xavier, Robson, and Marcus Paulo).

References

  1. Andrade R (2003) Conservação do ecossistema cavernícola. Quebra Corpo 11:4–5. http://www.gpme.org.br Google Scholar
  2. Arechavaleta M, Sala LL, Oromi P (1999) La fauna invertebada de la Cueva de Felipe Reventón (Icod de los Vinos, Tenerife, Islas Canarias). Vieraea 27:229–244Google Scholar
  3. Ashmole NP (1994) Colonization of the underground environment in volcanic islands. Memoires de Bioespéologie 20:1–11Google Scholar
  4. Auler AS (2006) Relevância de cavidades naturais subterrâneas: contextualização, impactos ambientais e aspectos jurídicos. Relatório técnico, Ministério de Minas e Energia (MME) Brasília. http://www.mme.gov.br
  5. Brancelj A, Culver DC (2005) Epikarstic communities. In: Culver DC, White WB (eds) Encyclopedia of caves. Elsevier Academic Press, Burlington, MA, pp 223–229. www.books.elsevier.com
  6. Brunet AK, Medelin RA (2001) The species-area relationship in bat assemblages of tropical caves. J Mammal 82(4):1114–1122CrossRefGoogle Scholar
  7. Calo F, Parise M (2006) Evaluating the human disturbance to karst environments in southern Italy. Acta Carsol 35(2):47–56Google Scholar
  8. Christiansen K (2005) Morphological adaptations. In: Culver DC, White W (eds) Encyclopedia of caves. Elsevier Academic Press, USA, pp 386–397Google Scholar
  9. Christman MC, Culver DC (2001) The relationship between cave biodiversity and available habitat. J Biogeogr 3(28):367–380Google Scholar
  10. Culver DC (2001) Subterranean ecosystems. In: Levin SA (ed) Encyclopaedia of biodiversity, vol 5. Academic Press, San Diego, pp 527–540Google Scholar
  11. Culver DC, Pipan T (2009) The biology of caves and other subterranean habitats. Library of Congress Cataloging in Publication Data, Oxford University Press, OxfordGoogle Scholar
  12. Culver DC, Sket B (2000) Hotspots of subterranean biodiversity in caves and wells. J Cave Karst Stud 62(1):11–17Google Scholar
  13. Culver DC, Master LL, Christman MC, Hobbs HH III (2000) Obligate cave fauna of the 48 contiguous United States. Cons Biol 14:386–401CrossRefGoogle Scholar
  14. Culver DC, Christman MC, Welliott WR, Hobbs HH, Reddell JR (2003) The North American obligate cave fauna: regional patterns. Biodivers Conserv 12:441–468CrossRefGoogle Scholar
  15. Culver DC, Christman MC, Sket B, Trontelj P (2004) Sampling adequacy in an extreme environment: species richness patterns in Slovenian caves. Biodivers Conserv 13:1209–1229CrossRefGoogle Scholar
  16. Culver DC, Deharveng L, Bedos A, Lewis JJ, Madden M, Reddell JR, Sket B, Trontelj P, White D (2006) The mid-latitude biodiversity ridge in terrestrial cave fauna. Ecography 29:120–128CrossRefGoogle Scholar
  17. Deharveng L (2005) Diversity patterns in the tropics. In: Culver DC, White WB (eds) Encyclopedia of caves. Elsevier Academic Press, Burlington, MA, pp 166–170. www.books.elsevier.com
  18. Dessen EMB, Eston VR, Silva MS, Temperini-Beck MT, Trajano E (1980) Levantamento preliminar da fauna de caveas de algumas regiões do Brasil. Ciência e Cultura 32(6):714–725Google Scholar
  19. Desutter-Grandcolas L (1997) Studies in cave life evolution: a rationale for future theoretical developments using phylogenetic inference. J Zool Syst Evol Res 35:23–31CrossRefGoogle Scholar
  20. Ferreira RL (2004) A medida da complexidade ecológica e suas aplicações na conservação e manejo de ecossistemas subterrâneos. Tese apresentada ao programa de pós-graduação em Ecologia Conservação e Manejo da Vida Silvestre do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil. http://www.ufmg.br/pos/ecologia/index.php/teses/63-2001-2010
  21. Ferreira RL (2005) A vida subterrânea nos campos ferruginosos. O Carste 3(17):106–115Google Scholar
  22. Ferreira RL (2006) Caracterização de ecossistemas subterrâneos do Complexo Mina do Pico (Itabirito, MG), Minerações Brasileiras Reunidas, MBR. Relatório TécnicoGoogle Scholar
  23. Ferreira RL, Martins RP (2001) Caveas em risco de ‘extinção’. Ciência Hoje 29:20–28Google Scholar
  24. Ferreira RL, Prous X, Martins RP (2007) Structure of bat guano communities in a dry Brazilian cave. Trop Zool 20:55–74Google Scholar
  25. Ford D, Williams P (2007) Karst hydrogeology and geomorphology, British Library Cataloguing in Publication Data. Blackwell Publishers, OxfordGoogle Scholar
  26. Gillieson DS (1998) Caves: processes, development and management, Library of Congress Cataloging-in-Publication Data. Blackwell Publishers, OxfordGoogle Scholar
  27. Gnaspini-Neto P, Trajano E (1994) Brazilian cave invertebrates with a checklist of troglomorphic taxa. Revista Brasileira de Entomologia 38:549–584Google Scholar
  28. Gunn J (2005) Encyclopedia of caves and karst science. Taylor & Francis Books Inc, New YorkGoogle Scholar
  29. Hammer O, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):9Google Scholar
  30. Harrison S, Ross SJ, Lawton JH (1992) Beta diversity on geographic gradients in Britain. J Anim Ecol 61:151–158CrossRefGoogle Scholar
  31. Hoch H, Asche M (1993) Evolution and speciation of cavedwelling Fulgoroidea in thecanary Islands (Homoptera: Cixiidae and Meenoplidae). Zool J Linn Soc 109:53–101CrossRefGoogle Scholar
  32. Howarth FG (1972) Cavernicoles in lava tubes on the Island of Hawaii. Science 175:325–326PubMedCrossRefGoogle Scholar
  33. Howarth FG (1980) The zoogeography of specialized cave animals: a bioclimatic model. Evolution 34:394–406CrossRefGoogle Scholar
  34. Howarth FG (2004) Hawaiian Islands: biospeleology. In: Gunn J (ed) Encyclopedia of caves and karst science. Library of Congress Cataloging-in-Publication Data pp 863–867Google Scholar
  35. Howarth FG, Hoch H (2005) Adaptive shifts. In: Culver DC, White WB (eds) Encyclopedia of caves. Elsevier Academic Press, Burlington, MA, pp 17–24. www.books.elsevier.com
  36. Howarth FG, James SA, McDowell W, Preston DJ, Imada CT (2007) Identification of roots in lava tube caves using molecular techniques: implications for conservation of cave arthropod faunas. J Insect Conserv 3(11):251–261CrossRefGoogle Scholar
  37. Juberthie C, Decu V (1998) Encyclopaedia biospeologica, vol II. Société de Biospéologies, ParisGoogle Scholar
  38. Juberthie C, Ginet R (1994) France. In: Juberthie C, Decu V (eds) Encyclopaedia biospeologica. Saint-Girons, Fabbro, pp 665–692Google Scholar
  39. Juberthie C, Delay B, Bouillon M (1980) Sur l’existence d’un milieu souterrain superflciel en zone non calcaire. Compte-rendu de l Académie des Sciences de Paris 290:49–52Google Scholar
  40. Koleff P, Gaston KJ, Lennon JJ (2003) Measuring beta diversity for presence–absence data. J Anim Ecol 72:367–382CrossRefGoogle Scholar
  41. Magurran AE (2004) Measuring biological diversity. Blackwell Science Ltd, New York, p 256Google Scholar
  42. Maurity CW, Kotschoubey B (2005) Evolução da cobertura de alteração no platô N1 Serra dos Carajás, PA. Degradação, pseudocarstificação, espeleotemas. O Carste 3(17):78–91Google Scholar
  43. Medina AL, Oromi P (1990) First data on the superficial underground compartment in La Gomera (Canary Islands). Memoires de Bioespéologie 17:87–91Google Scholar
  44. Morrelato LPC, Haddad CFB (2000) The Brazilian Atlantic forest. Biotropica 32(4b):786–792CrossRefGoogle Scholar
  45. Oliver I, Beattie AJ (1996) Invertebrate morphoespecies as surrogates for species: a case study. Conserv Biol 1(10):99–109CrossRefGoogle Scholar
  46. Oromí P, Martín JL, Ashmole NP, Ashmole MJ (1990) A preliminary report on the cavernicolous fauna of the Azores. Mém Biospéol 17:97–105Google Scholar
  47. Peck SB (1992) A synopsis of the cave fauna of Jamaica. Bull Natl Speleol Soc 54:37 60Google Scholar
  48. Picker MD, Samways MJ (1996) Faunal diversity and endemicity of the Cape Penisula, South Africa, a first assessment. Biodivers Conserv 5:591–606CrossRefGoogle Scholar
  49. Piló LB, Auler AS (2005) Caveas em minério de ferro e canga de capão Xavier, quadrilátero ferrífero, MG. O Carste 3(17):92–105Google Scholar
  50. Pinto YLM (1939) As grutas em Minas Gerais, Oficina gráfica da estatística, Belo Horizonte, MGGoogle Scholar
  51. Ruzicka V, Zacharda M (1994) Arthropods of stony debris in the Krkonose Mountains, Czech Republic. Arctic Alpine Res 4(26):332–338CrossRefGoogle Scholar
  52. Sharratt NJ, Picker M, Samways M (2000) The invertebrate fauna of the sandstone of the caves of the Cape Penisula (South Africa): patterns of endemism and conservation priorities. Biodivers Conserv 9:107–143CrossRefGoogle Scholar
  53. Simmons GC (1963) Canga caves in quadrilátero ferrífero, Minas Gerais, Brasil. Natl Speleol Soc Bull 25:66–72Google Scholar
  54. Terborgh J (1992) Maintenance of the diversity in tropical forests. Biotropica 24:283–292CrossRefGoogle Scholar
  55. Trajano E (2000) Cave faunas in the Atlantic tropical rain forest: composition, ecology and conservation. Biotropica 32:882–893Google Scholar
  56. Trajano E, Moreira JRA (1991) Estudo da fauna de caveas da Província Espeleológica Arenítica Altamira-Itaituba, Pará. Rev Bras Biol 51(1):13–29Google Scholar
  57. Van Beynen P, Townsend K (2005) A disturbance index for karst environments. Environ Manage 36(1):101–116PubMedCrossRefGoogle Scholar
  58. Weinstein P, Slaney D (1995) Invertebrate faunal survey of Rope Ladder cave, Northern Queensland: a comparative study of sampling methods. J Aust Entomol Soc 34:233–236CrossRefGoogle Scholar
  59. Whittaker RH (1960) Vegetation of the Siskiyou mountains, Oregon and California. Ecol Monogr 30:279–338CrossRefGoogle Scholar
  60. Zar JH (1984) Biostatistical analysis, 2nd edn. Prentice Hall, New Jersey, p 718Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Marconi Souza Silva
    • 1
  • Rogério Parentoni Martins
    • 2
  • Rodrigo Lopes Ferreira
    • 3
    Email author
  1. 1.Núcleo de Pesquisa em Saúde e Biológicas do Centro Universitário de Lavras/Fundação Educacional de LavrasRua Padre José PoggelLavrasBrazil
  2. 2.Departamento de Biologia, Centro de CiênciasUniversidade Federal do CearáFortalezaBrazil
  3. 3.Laboratório de Ecologia Subterrânea, Departamento de Biologia/Setor de ZoologiaUniversidade Federal de LavrasLavrasBrazil

Personalised recommendations