Biodiversity and Conservation

, Volume 20, Issue 3, pp 519–530 | Cite as

On the use of Apiformes and Spheciformes (Insecta: Hymenoptera) populations as a management tool

Original Paper


The creation of Protected Areas was one of the first measures taken for the protection of biodiversity and it is still the most widely used. The establishment of systems to evaluate the effectiveness of the management of these areas are crucial to validate their importance for conservation and guide the managers towards their conservation goals. Aculeate Hymenoptera, specifically Apiformes and Spheciformes, gather exceptional characteristics as bioindicators and are essential to ecosystem sustainability by including key pollinators (Apiformes), contribute for the maintenance of the equilibrium between arthropod populations (Spheciformes), and also reflect the patterns of other taxa. Apiformes and Spheciformes communities were sampled with Malaise traps in eight different habitats initially identified by habitat type (mainly vegetation). These communities were evaluated to determine if the habitats could be differentiated based on their Apiformes and Spheciformes generic communities. Apiformes and Spheciformes diversity provided limited differentiation between habitats but was able to differentiate the most disturbed habitat from the most pristine. In general, Apiformes and Spheciformes communities were different among the eight habitats. It was also possible to establish a relation between some genera and a specific habitat type. Several genera of Apiformes and Spheciformes showed a preference for the riparian galery (RLR) and a mixed woodland (COZ), providing a general idea of the ideal conditions for the development of these groups. These results suggest that Apiformes and Spheciformes communities are a suitable management tool for habitat evaluation.


Aculeate Hymenoptera Apiformes Bioindicators Management tool Natural area Spheciformes 

Supplementary material

10531_2010_9962_MOESM1_ESM.pdf (202 kb)
Supplementary material 1 (PDF 202 kb)


  1. Abelho M, Graça MAS (1996) Effects of eucalyptus afforestation on leaf litter dynamics and macroinvertebrate community structure of streams in Central Portugal. Hydrobiologia 324:195–204CrossRefGoogle Scholar
  2. Alves AM, Pereira JS, Silva JMN (2007) O eucaliptal em Portugal. Impactes ambientais e investigação científica. ISAPress, Lisboa, PortugalGoogle Scholar
  3. Ashagrie Y, Zech W, Guggenberger G (2005) Transformation of a Podocarpus falcatus dominated natural forest into a monoculture Eucalyptus globulus plantation at Munesa, Ethiopia: soil organic C, N and S dynamics in primary particle and aggregate-size fractions. Agric Ecosyst Environ 106:89–98CrossRefGoogle Scholar
  4. Ashmead WH (1894) The habits of the Aculeated Hymenoptera—III. Pshyche 7:59–66CrossRefGoogle Scholar
  5. Báldi A (2003) Using higher taxa as surrogates of species richness: a study based on 3700 Coleoptera, Diptera, and Acari species in Central-Hungarian reserves. Basic Appl Ecol 4:589–593CrossRefGoogle Scholar
  6. Bale JS (1991) Insects at low temperature: a predictable relationship? Funct Ecol 5:291–298CrossRefGoogle Scholar
  7. Balmford A, Jayasuriya AHM, Green MJB (1996) Using higher-taxon richness as a surrogate for species richness: II Local applications. Proc R Soc Lond B Biol Sci 263:1571–1575CrossRefGoogle Scholar
  8. Bitsch J, Leclercq J (1993) Hyménoptères Sphecidae d’Europe occidentale, vol 1. Faune de France 79. Fédération Française Des Sociétés De Sciences Naturelles, ParisGoogle Scholar
  9. Bitsch J, Barbier Y, Gayubo SF, Schmidt K, Ohl M (1997) Hyménoptères Sphecidae d’Europe occidentale, vol 2. Faune de France 82. Fédération Française Des Sociétés De Sciences Naturelles, ParisGoogle Scholar
  10. Bitsch J, Dollfuss H, Boucek Z, Schmidt K, Schmidt-Egger C, Gayubo SF, Antropov AV, Barbier Y (2001) Hyménoptères Sphecidae d’Europe occidentale, vol 3. Faune de France 86. Fédération Française Des Sociétés De Sciences Naturelles, ParisGoogle Scholar
  11. Buchmann SL, Nabhan GP (1996) The pollination crisis—the plight of the honey bee and the decline of other pollinators imperils future harvests. Sciences 36:22–27Google Scholar
  12. Büchs W (2003) Biodiversity and agri-environmental indicators—general scopes and skills with special reference to the habitat level. Agric Ecosyst Environ 98:35–78CrossRefGoogle Scholar
  13. Carré G, Roche P, Chifflet R, Morison N, Bommarco R, Harrison-Cripps J, Krewenka K, Potts SG, Roberts SPM, Rodet G, Settele J, Steffan-Dewenter I, Szentgyörgyi H, Tscheulin T, Westphal C, Woyciechowski M, Vaissière BE (2009) Landscape context and habitat type as drivers of bee diversity in European annual crops. Agric Ecosyst Environ 133:40–47CrossRefGoogle Scholar
  14. CEUC (1992) Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. In: T. C. O. T. E. U. Communities (ed) OJ L 206, 22.7.1992, p 7Google Scholar
  15. Chape S, Harrison J, Spalding M, Lysenko I (2005) Measuring the extent and effectiveness of protected areas as an indicator for meeting global biodiversity targets. Phil Trans R Soc B Biol Sci 360:443–455CrossRefGoogle Scholar
  16. Corbet SA, Backhouse M (1975) Aphid-hunting wasps: a field study of Passaloecus. Trans R Entomol Soc Lond 127:11–30CrossRefGoogle Scholar
  17. Dias BS, Raw A, Imperatri-Fonseca VL (1999) International pollinators initiative: the Sao Paulo declaration on pollinators. Report on the recommendations of the workshop on the conservation asnd sustainable use of pollinators in agriculture with emphasis on bees. Brazilian Ministry of the Environment (MMA), BrazilGoogle Scholar
  18. Diniz MA (1962) Claves para la identificación de los géneros de ápidos de la Península Ibérica (Hymenoptera). Graellsia 19:113–135Google Scholar
  19. Doerr SH, Shakesby RA, Walsh RPD (1998) Spatial variability of soil hydrophobicity in fire-prone eucalyptus and pine forests, Portugal. Soil Sci 163:313–324CrossRefGoogle Scholar
  20. Donovan B (2003) Potential manageable exploitation of social wasps, Vespula spp (Hymenoptera: Vespidae), as generalist predators of insect pests. Int J Pest Manag 49:281–285CrossRefGoogle Scholar
  21. Duelli P, Obrist MK (2003) Biodiversity indicators: the choice of values and measures. Agric Ecosyst Environ 98:87–98CrossRefGoogle Scholar
  22. Eickwort GC, Kukuk PF, Wesley FR (1986) The nesting biology of Dufourea novaeangliae (Hymenoptera: Halictidae) and the systematic position of the Dufoureinae based on behavior and development. J Kansas Entomol Soc 59:103–120Google Scholar
  23. Ellison LE, van III Riper C (1998) A comparison of small-mammal communities in a desert riparian floodplain. J Mammal 79:972–985CrossRefGoogle Scholar
  24. Fabião A, Madeira M, Cortez N, Magalhães MC, Ribeiro C (2007) As plantações de eucalipto e o solo. In: Alves AM, Pereira JS, Silva JMN (eds) O eucaliptal em Portugal: impactes ambientais e investigação cientifíca. ISAPress, Lisbon, Portugal, pp 137–174Google Scholar
  25. Fiedler K, Schulze CH (2009) Forest modification affects Diversity (but not dynamics) of speciose tropical pyraloid moth communities. Biotropica 36:615–627Google Scholar
  26. Finnamore AT, Winchester NN, Behan-Pelletier VM (1998) Protocols for measuring biodiversity: arthropod monitoring in terrestrial ecosystems.
  27. Gaston KJ, Williams PH (1993) Mapping the world’s species—the higher taxon approach. Biodivers Lett 1:2–8CrossRefGoogle Scholar
  28. Gayubo SF, González JA, Torres F (2000) Estudio de una comunidad de esfécidos en la zona natural de “Las Arribes del Duero” (Salamanca, Oeste español) (Hymenoptera: Sphecidae). Fragm Entomol 32:181–209Google Scholar
  29. Gayubo SF, González JA, Asís J, Tormos F (2005) Conservation of European environments: the Spheciformes wasps as biodiversity indicators (Hymenoptera: Apoidea: Ampulicidae, Sphecidae and Cabronidae). J Nat Hist 39:2705–2714CrossRefGoogle Scholar
  30. Genaro JA (1996) Key to the genus Megachile, Chalicodoma group (Hymenoptera: Megachilidae) in Cuba. Rev Biol Trop 44:193–198Google Scholar
  31. Godinho C, Rabaça J, Segurado P (2009) Breeding bird assemblages in riparian galleries of the Guadiana River basin (Portugal): the effect of spatial structure and habitat variables. Ecol Res 1–12Google Scholar
  32. Gregory S, Wright I (2005) Creation of patches of bare ground to enhance the habitat of ground-nesting bees and wasps at Shotover Hill, Oxfordshire, England. Conserv Evid 2:139–141Google Scholar
  33. Hill JK, Hamer KC (2004) Determining impacts of habitat modification on diversity of tropical forest fauna: the importance of spatial scale. J Appl Ecol 41:744–754CrossRefGoogle Scholar
  34. Hirsch M, Wolters V (2003) Response of Aculeate Hymenoptera to spatial features of an agricultural landscape. J Nat Conserv 11:179–185CrossRefGoogle Scholar
  35. Jago ND (1998) The world-wide magnitude of Orthoptera as pests. J Orthopt Res 7:117–124CrossRefGoogle Scholar
  36. Jenkins CN, Joppa L (2009) Expansion of the global terrestrial protected area system. Biol Conserv 142:2166–2174CrossRefGoogle Scholar
  37. Kearns CA, Inouye DW, Waser NM (1998) Endangered mutualisms: the conservation of plant-pollinator interactions. Annu Rev Ecol Syst 29:83–112CrossRefGoogle Scholar
  38. Kevan PG (1999) Pollinators as bioindicators of the state of the environment: species, activity and diversity. Agric Ecosyst Environ 74:373–393CrossRefGoogle Scholar
  39. Kluser S, Peduzzi P (2007) Global pollinator decline: a litterature review. UNEP/GRID-Europe, Geneva, SwitzerlandGoogle Scholar
  40. McNeely JA (1994) Protected areas for the 21st century: working to provide benefits to society. Biodivers Conserv 3:390–405CrossRefGoogle Scholar
  41. Melo GAR (2000) Comportamento social em vespas da família Sphecidae (Hymenoptera: Apoidea). In: Martins RP, Lewinsohn TM, Barbeitos MS (eds) Ecologia e comportamento de insetos, vol III. Série Oecologia Brasiliensis. PPGE-UFRJ, Rio de Janeiro, Brazil, pp 85–130Google Scholar
  42. Michener CD (2000) The bees of the world. The Johns Hopkins University Press, Baltimore, MarylandGoogle Scholar
  43. Ottonetti L, Tucci L, Santini G (2006) Recolonization patterns of ants in a rehabilitated lignite mine in central Italy: potential for the use of Mediterranean ants as indicators of restoration processes. Restor Ecol 14:60–66CrossRefGoogle Scholar
  44. R Development Core Team (2009) R 2.9.1. A language and environment for statistical computing computer program, version by R Development Core Team, Vienna, AustriaGoogle Scholar
  45. Rodrigues ASL, Andelman SJ, Bakarr MI, Boitani L, Brooks TM, Cowling RM, Fishpool LDC, da Fonseca GAB, Gaston KJ, Hoffmann M, Long JS, Marquet PA, Pilgrim JD, Pressey RL, Schipper J, Sechrest W, Stuart SN, Underhill LG, Waller RW, Watts MEJ, Yan X (2004) Effectiveness of the global protected area network in representing species diversity. Nature 428:640–643CrossRefPubMedGoogle Scholar
  46. Rozen JG (1965) The biology and immature stages of Melitturga clavicornis (Latreille) and of Sphecodes albilabris (Kirby) and the recognition of the Oxaeidae at the family level (Hymenoptera, Apoidea). Am Mus Novit 2224:1–18Google Scholar
  47. Seaby RM, Henderson PA (2006) Species diversity and richness. Version 4. Pisces Conservation Ltd, Lymington, EnglandGoogle Scholar
  48. Sheskin DJ (2004) Handbook of parametric and nonparametric statistical procedures, 3rd edn. CRC Press LLC, Boca Raton, FLGoogle Scholar
  49. Takumi RL (1999) A systematic review of the Ectemnius (Hymenoptera: Sphecidae) of Hawaii. University of California Press, BerkeleyGoogle Scholar
  50. Terzo M, Ortiz-Sánchez FJ (2004) Nuevos datos para las especies de Ceratinini de España y Portugal, con una clave para su identificación (Hymenoptera, Apoidea, Xylocopinae). Graellsia 60:13–26Google Scholar
  51. Tscharntke T, Gathmann A, Steffan-Dewenter I (1998) Bioindication using trap-nesting bees and wasps and their natural enemies: community structure and interactions. J Appl Ecol 35:708–719CrossRefGoogle Scholar
  52. Tylianakis J, Veddeler D, Lozada T, Lopez RM, Benitez P, Klein A-M, de Koning GH, Olschewski R, Veldkamp E, Navarrete H, Onore G, Tschamike T (2004) Biodiversity of land-use systems in coastal Ecuador and bioindication using trap-nesting bees, wasps and their natural enemies. Lyonia 6:7–15Google Scholar
  53. UNEP-WCMC (2008) State of the world’s protected areas: an annual review of global conservation progress. UNEP-WCMC, CambridgeGoogle Scholar
  54. Walker BH (1992) Biodiversity and ecological redundancy. Conserv Biol 6:18–23CrossRefGoogle Scholar
  55. Williams NM, Minckley RLM, Silveirs FA (2001) Variation in native bee faunas and its implications for detecting community changes. Conserv Ecol 5:7Google Scholar
  56. Winston ML (1991) The biology of the honey bee. Harvard University Press, USAGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.AmBioDiv—AmbienteNatureza e Sustentabilidade, Lda., Rua Filipe da MataLisbonPortugal
  2. 2.Unidad de Zoología, Departamento de Biología AnimalFacultad de Biología, Universidad de SalamancaSalamancaSpain

Personalised recommendations