Skip to main content
Log in

Epiphyte sensitivity to a cross-scale interaction between habitat quality and macroclimate: an opportunity for range-edge conservation

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Bioclimatic envelope models are frequently used to project the species response to climate change scenarios. Development and improvement of bioclimatic models has focussed on data properties and statistical tools, while significant criticism continues to challenge the ecological framework of model assumptions. We hypothesised that a potential for model improvement emerges from linkage across scales, between macroclimate and variation in local habitat quality: i.e. a species’ habitat specificity may shift along macroclimatic gradients. We first sampled two test-case epiphytic lichen species across a steep climatic gradient, and second developed standard bioclimatic models accompanied by a threshold likelihood value for discriminating presences and absences. We used the difference between predicted model values and the threshold as a response variable (D thr): we show that values for D thr are explained by an interaction between the climatic setting and habitat quality. A potential error in bioclimatic models is then quantified as the region of false absences or presences, which would be incurred as a consequence of sensitivity to variable habitat. This signature habitat effect occurs at a species’ range-edge, and, as a corollary, provides quantification in support of conservation: i.e. information is provided on how a habitat may be managed in marginal climatic regions (leading or trailing range-edge boundaries) in order to promote species protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Araújo MB, Luoto M (2007) The importance of biotic interactions for modelling species distributions under climate change. Glob Ecol Biogeogr 16:743–753

    Article  Google Scholar 

  • Araújo MB, New M (2006) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47

    Article  PubMed  Google Scholar 

  • Araújo MB, Pearson RG, Thuiller W et al (2005a) Validation of species-climate impact models under climate change. Glob Change Biol 11:1504–1513

    Article  Google Scholar 

  • Araújo MB, Whittaker RJ, Ladle RJ et al (2005b) Reducing uncertainty in projections of extinction risk from climate change. Glob Ecol Biogeogr 14:529–538

    Article  Google Scholar 

  • Ashcroft MB, Chisholm LA, French KO et al (2009) Climate change at the landscape scale: predicting fine-grained spatial heterogeneity in warming and potential refugia for vegetation. Glob Change Biol 15:656–667

    Article  Google Scholar 

  • Bakkenes M, Alkemade JRM, Ihle F et al (2002) Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Glob Change Biol 8:390–407

    Article  Google Scholar 

  • Beale CM, Lennon JJ, Gimona A (2008) Opening the climate envelope reveals no macroscale associations with climate in European birds. Proc Natl Acad Sci 105:14908–14912

    Article  CAS  PubMed  Google Scholar 

  • Beaumont LJ, Hughes L, Pitman AJ (2008) Why is the choice of future climate scenarios for species distribution modelling important? Ecol Lett 11:1135–1146

    PubMed  Google Scholar 

  • Belinchón R, Martínez I, Otálora MAG et al (2009) Fragment quality and matrix affect epiphytic performance in a Mediterranean forest landscape. Am J Bot 96:1974–1982

    Article  Google Scholar 

  • Berry PM, Dawson TP, Harrison PA, Pearson RG (2002) Modelling potential impacts of climate change on the bioclimatic envelope of species in Britain and Ireland. Glob Ecol Biogeogr 11:453–462

    Article  Google Scholar 

  • Brotons L, Thuiller W, Araújo MB et al (2004) Presence-absence versus presence-only modelling methods for protecting bird habitat suitability. Ecography 27:437–448

    Article  Google Scholar 

  • Cleavitt NL, Dibble AC, Werier DA (2009) Influence of tree composition upon epiphytic macrolichens and bryophytes in old forests of Acadia National Park, Maine. Bryologist 112:467–483

    Article  Google Scholar 

  • Delcourt HR, Delcourt PA (1988) Quaternary landscape ecology: relevant scales in space and time. Landsc Ecol 2:23–44

    Article  Google Scholar 

  • Diniz-Filho JA, Bini LM, Rangel TF et al (2009) Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography 32:897–906

    Article  Google Scholar 

  • Elith J, Graham CH (2009) Do they? How do they? Why do they differ? On finding reasons for differing performances of species distribution models. Ecography 32:66–77

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP et al (2006) Novel methods improve predictions of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Ellis CJ, Coppins BJ (2007) Changing climate and historic-woodland structure interact to control species diversity of the ‘Lobarion’ epiphyte community in Scotland. J Veg Sci 18:725–734

    Article  Google Scholar 

  • Ellis CJ, Coppins BJ, Dawson TP et al (2007) Response of British lichens to climate change scenarios: trends and uncertainties in the projected impact for contrasting biogeographic groups. Biol Conserv 140:217–235

    Article  Google Scholar 

  • Ellis CJ, Yahr R, Coppins BJ (2009) Local extent of old-growth woodland modifies epiphyte response to climate change. J Biogeogr 36:302–313

    Article  Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Article  Google Scholar 

  • Gauslaa Y, Solhaug KA (1996) Differences in the susceptibility to light stress between epiphytic lichens of ancient and young boreal forest stands. Funct Ecol 10:344–354

    Article  Google Scholar 

  • Gauslaa Y, Solhaug KA (1999) High-light damage I air-dry thalli of the old forest lichen Lobaria pulmonaria—interactions of irradiance, exposure duration and high temperature. J Exp Bot 50:697–705

    Article  CAS  Google Scholar 

  • Gauslaa Y, Lie M, Solhaug KA, Ohlson M (2006) Growth and ecophysiological acclimation of the foliose lichen Lobaria pulmonaria in forests with contrasting light regimes. Oecologia 147:406–416

    Article  PubMed  Google Scholar 

  • Greig-Smith P (1950) Evidence from hepatics on the history of the British flora. J Ecol 38:320–344

    Article  Google Scholar 

  • Gu W-D, Kuusinen M, Konttinen T, Hanski I (2001) Spatial pattern in the occurrence of the lichen Lobaria pulmonaria in managed and virgin boreal forests. Ecography 24:139–150

    Article  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  Google Scholar 

  • Heikkinen RK, Luoto M, Araújo MB et al (2006) Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog Phys Geogr 30:751–777

    Article  Google Scholar 

  • Jüriado I, Liira J, Suija A (2009) Tree and stand level variables influencing diversity of lichens on temperate broad-leaved trees in boreo-nemoral floodplain forests. Biodivers Conserv 18:105–125

    Article  Google Scholar 

  • Kalwij JM, Wagner HH, Scheidegger C (2005) Effects of stand-level disturbances on the spatial distribution of a lichen indicator. Ecol Appl 15:2015–2024

    Article  Google Scholar 

  • Lättman H, Milberg P, Palmer MW et al (2009) Changes in the distribution of epiphytic lichens in southern Sweden using a new statistical method. Nord J Bot 27:413–418

    Article  Google Scholar 

  • Lennon JJ, Kunin WE, Corne S et al (2002) Are Alaskan trees found in locally more favourable sites in marginal areas? Glob Ecol Biogeogr 11:103–114

    Article  Google Scholar 

  • Lidén M, Hilmo O (2005) Population characteristics of the suboceanic lichen Platismatia norvegica in core and fringe habitats: relations to macroclimate, substrate, and proximity to streams. Bryologist 108:506–517

    Article  Google Scholar 

  • Luoto M, Virkkala R, Heikkinen RK (2007) The role of land cover in bioclimatic models depends on spatial resolution. Glob Ecol Biogeogr 16:34–42

    Article  Google Scholar 

  • Manel S, Williams HC, Ormerod SJ (2001) Evaluating presence-absence models in ecology: the need to account for prevalence. J Appl Ecol 38:921–931

    Article  Google Scholar 

  • Marmion M, Luoto M, Heikkinen RK et al (2009) The performance of state of the art modelling techniques depends on the geographical distribution of species. Ecol Model 220:3512–3520

    Article  Google Scholar 

  • McCune B (2006) Nonparametric habitat models with automatic interactions. J Veg Sci 17:819–830

    Article  Google Scholar 

  • McCune B (2009) Nonparametric multiplicative regression for habitat modelling. http://www.pcord.com/NPMRintro.pdf

  • McCune B, Mefford MJ (1999) PC-Ord v. 4.41, multivariate analysis of ecological data. MjM Software, Oregon

    Google Scholar 

  • McCune B, Mefford MJ (2009) HyperNiche v. 2, nonparametric multiplicative habitat modeling. MjM Software, Oregon

    Google Scholar 

  • NEGTAP (2001) Transboundary air pollution: acidification, eutrophication and ground-level ozone in the UK. National Expert Group on Transboundary Air Pollution. CEH, Edinburgh

  • Öckinger E, Niklasson M, Nilsson SG (2005) Is local distribution of the epiphytic lichen Lobaria pulmonaria limited by dispersal capacity or habitat quality? Biodivers Conserv 14:759–773

    Article  Google Scholar 

  • Oliver T, Hill KK, Thomas CD et al (2009) Changes in habitat specificity of species at their climatic range boundaries. Ecol Lett 12:1091–1102

    Article  PubMed  Google Scholar 

  • Pearce J, Ferrier S (2000) Evaluating the predictive performance of habitat models developed using logistic regression. Ecol Model 133:225–245

    Article  Google Scholar 

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimatic envelope models useful? Glob Ecol Biogeogr 12:361–371

    Article  Google Scholar 

  • Pearson RG, Dawson TP, Liu C (2004) Modelling species distributions in Britain: a hierarchical integration of climate and land-cover data. Ecography 27:285–298

    Article  Google Scholar 

  • Pearson RG, Thuiller W, Araújo MB et al (2006) Model-based uncertainty in species range prediction. J Biogeogr 22:1704–1711

    Article  Google Scholar 

  • Perry MC, Hollis DM (2005) The generation of monthly gridded datasets for a range of climate variables over the UK. J Climatol 25:1041–1054

    Article  Google Scholar 

  • Poloczanska ES, Hawkins SJ, Southward AJ et al (2008) Modeling the response of populations of competing species to climate change. Ecology 89:3138–3149

    Article  Google Scholar 

  • R Development Core Team (2008) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Roberts AJ, Russell C, Walker GJ et al (1992) Regional variation in the origin, extent and composition of Scottish woodland. Bot J Scotl 46:167–189

    Article  Google Scholar 

  • Schweiger O, Settele J, Kudrna O et al (2008) Climate change can cause spatial mismatch of trophically interacting species. Ecology 89:3472–3479

    Article  PubMed  Google Scholar 

  • Seaward MRD (1975) Lichen flora of the west Yorkshire conurbation. Proc Leeds Philos Lit Soc 10:141–208

    Google Scholar 

  • Suttle KB, Thomsen MA, Power ME (2007) Species interactions reverse grassland responses to changing climate. Science 315:640–642

    Article  CAS  PubMed  Google Scholar 

  • Svenning J-C, Skov F (2004) Limited filling of the potential range in European tree species. Ecol Lett 7:565–573

    Article  Google Scholar 

  • Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293

    Article  CAS  PubMed  Google Scholar 

  • Thuiller W (2004) Patterns and uncertainties of species’ range shifts under climate change. Glob Change Biol 10:2020–2027

    Article  Google Scholar 

  • Thuiller W, Araújo MB, Lavorel S (2004a) Do we need land-cover data to model species distributions in Europe? J Biogeogr 31:353–361

    Article  Google Scholar 

  • Thuiller W, Brotons L, Araújo MB et al (2004b) Effects of restricting environmental range of data to project current and future species distributions. Ecography 27:165–172

    Article  Google Scholar 

  • Thuiller W, Lavorel S, Araújo MB et al (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci 102:8245–8250

    Article  CAS  PubMed  Google Scholar 

  • Titeux N, Maes D, Marmion M et al (2009) Inclusion of soil data improves the performance of bioclimatic envelope models for insect species distributions in temperate Europe. J Biogeogr 36:1459–1473

    Article  Google Scholar 

  • Trivedi MR, Berry PM, Morecroft MD et al (2008a) Spatial scale affects bioclimate model projections of climate change impacts on mountain plants. Glob Change Biol 14:1089–1103

    Article  Google Scholar 

  • Trivedi MR, Morecroft MD, Berry PM et al (2008b) Potential effects of climate change on plant communities in three montane nature reserves in Scotland, UK. Biol Conserv 141:1665–1675

    Article  Google Scholar 

  • Tylianakis JM, Didham RK, Bascompte J et al (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363

    Article  PubMed  Google Scholar 

  • Van Herk CM, Aptroot A, Van Dobben HF (2002) Long-term monitoring in the Netherlands suggests that lichens respond to global warming. Lichenologist 34:141–154

    Article  Google Scholar 

  • Walker GJ, Kirby KJ (1989) Inventories of ancient, long-established and semi-natural woodland for Scotland. Research and Survey in Nature Conservation No. 22. Nature Conservancy Council, Peterborough

  • Werth S, Wagner HH, Gugerli F, Holderegger R, Csencsics D, Kalwij JM, Scheidegger C (2006) Quantifying dispersal and establishment limitation in a population of an epiphytic lichen. Ecology 87:2037–2046

    Article  PubMed  Google Scholar 

  • Wiens JA, Stralberg D, Jongsomjit D et al (2009) Niches, models and climate change: assessing the assumptions and uncertainties. Proc Natl Acad Sci 106:19729–19736

    Article  CAS  PubMed  Google Scholar 

  • Wood SN (2006) Generalized additive models: an introduction with R. CRC/Chapman & Hall, Boca Raton

    Google Scholar 

Download references

Acknowledgments

We thank NERC for sponsoring fieldwork through a bursary in support of the first author (VL). The project received additional support as grant-in-aid to RBGE from the Scottish Government. We thank two anonymous referees for comments to improve an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Ellis.

Appendix

Appendix

See Table 3.

Table 3 Model diagnostics for the climatic response of L. pulmonaria and S. globosus, using NPMR and a suit of 13 explanatory climate variables

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lisewski, V., Ellis, C.J. Epiphyte sensitivity to a cross-scale interaction between habitat quality and macroclimate: an opportunity for range-edge conservation. Biodivers Conserv 19, 3935–3949 (2010). https://doi.org/10.1007/s10531-010-9938-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-010-9938-2

Keywords

Navigation